
Maximal Metric Margin Partitioning
for Similarity Search Indexes

Hisashi Kurasawa
The University of Tokyo

2-1-2 Hitotsubashi,
Chiyoda-ku, Tokyo, JAPAN

kurasawa@nii.ac.jp

Daiji Fukagawa, Atsuhiro Takasu,
Jun Adachi

National Institute of Informatics
2-1-2 Hitotsubashi,

Chiyoda-ku, Tokyo, JAPAN
{daiji,takasu,adachi}@nii.ac.jp

ABSTRACT
We propose a partitioning scheme for similarity search in-
dexes that is called Maximal Metric Margin Partitioning
(MMMP). MMMP divides the data on the basis of its dis-
tribution pattern, especially for the boundaries of clusters.
A partitioning surface created by MMMP is likely to be at
maximum distances from the two cluster boundaries. MMMP
is the first similarity search index approach to focus on
partitioning surfaces and data distribution patterns. We
also present an indexing scheme, named the MMMP-Index,
which uses MMMP and small ball partitioning. The MMMP-
Index prunes many objects that are not relevant to a query,
and it reduces the query execution cost. Our experimental
results show that MMMP effectively indexes clustered data
and reduces the search cost. For clustered vector data, the
MMMP-Index reduces the computational cost to less than
two thirds that of comparable schemes.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems—Multimedia
databases; H.3.1 [Information Storage and Retrieval]:
Content Analysis and Indexing—Indexing methods

General Terms
Algorithms, Performance

Keywords
Similarity search, Indexing, Metric space

1. INTRODUCTION
A similarity search efficiently finds objects that are simi-

lar to a query from a large dataset [10]. Similarity searches
based on a metric space can be applied to all types of data
whose distances obey metric space postulates such as the
triangle inequality. Therefore, metric space indexes are very

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM’09, November 2–6, 2009, Hong Kong, China.
Copyright 2009 ACM 978-1-60558-512-3/09/11 ...$10.00.

useful for applications that deal with huge amounts of vec-
tors, strings, graphs, tags, and so on.

Many similarity search indexes use Pivot Partitioning. A
Pivot is a reference object in an index. Pivot partitioning
divides the space into regions based on the distance from
the pivot. When searching for objects, the regions far from
the query are pruned. Its performance depends on the pivot
selection. A better division prunes more objects during the
search. Early pivot selections were based on heuristics [9].
They use simple statistical features such as the mean and
the variance for selecting pivots. However, their choices of
pivots are only a little better than random selection. Re-
cently, other selection mechanisms have been proposed on
the basis of data distribution [6]. These methods set clus-
ter centers as the pivots and divide the data on the basis of
the distances from the pivots. Although they can effectively
classify dense regions, they only work well on particular dis-
tribution patterns. A cluster may be separated by pivots,
because their partitioning surfaces are based on cluster cen-
ters rather than cluster shapes.

We propose a novel method for pivot partitioning called
Maximal Metric Margin Partitioning (MMMP), which can
be adapted to the shapes of data clusters. First, MMMP
constructs hierarchical clusters with arbitrary shapes by us-
ing OPTICS [2]. After that, it divides the data on the basis
of the boundaries of same-degree clusters from the root of
the cluster branches. During this division, MMMP looks for
the pivot object that maximizes the distances between the
clusters. The main contribution of this paper is that we have
developed a pivot selection for metric spaces that is based
on maximal margins, that is effective for clustered data.

In this paper, we explain how MMMP divides data for a
similarity search index. We also present an indexing scheme
called MMMP-Index. We conducted two experiments. The
first experiment evaluated the partitioning performance of
MMMP. The other evaluated the indexing performance in
comparison with existing schemes.

2. RELATED WORK
Many metric space indexing schemes use pivot partition-

ing. The early studies selected pivots that were far away
from the other objects and other pivots [9]. Their aim was
to get various distances from the pivot to each object and
reduce useless pivots. Some also tried to exclude dense re-
gions [5, 8]. These methods used simple statistical features
such as the mean [3, 5], the variance [9, 8], and the ratio [7].

Recently, more elaborate features that are based on data



distribution have been used [6]. iDistance clusters the search
space and identifies the cluster centers. It uses a Voronoi
partition, and it sets the cluster centers as pivots. This
scheme divides the search space into regions by using the
pivots representing the data clusters. This helps reduce the
number of regions accessed during searching. A more recent
method improves the indexing performance [11].

The above schemes have difficulty in handling objects in
a sparse space because the clustering result would be mean-
ingless in such a case. List of Clusters (LC) [4] is another
way of exploiting the knowledge of the data distribution. It
divides the search space by using small ball partitioning, and
it recursively excludes the indexed objects from the space.
The radius of the partitioning is determined from the num-
ber of objects inside the partition. However, it needs more
pivots because of its smaller radius than other schemes.

We think pivot partitioning can further reduce the search
cost by utilizing the data distribution of the objective dataset.
In the existing approaches, skewed data clusters may be sep-
arated into multiple regions by pivots, because their par-
titioning surfaces are based on cluster centers rather than
cluster shapes. This causes the an increase in query ex-
ecution cost. Therefore, we developed a new partitioning
scheme that is based on the shapes of the data clusters.

3. MMMP
This section proposes our pivot selection method, which

we call Maximal Metric Margin Partitioning (MMMP), that
selects pivots based on the shapes of the data clusters.

For a metric space M = (D, d), suppose a pivot p divides
a set S of objects in D into two regions:

S1 = {o ∈ S | d(o, p) ≤ rp} , S2 = {o ∈ S | d(o, p) > rp} ,

where rp is the partitioning distance for pivot p. When
searching for objects within rq from a query object q in
terms of the metric space M , if the inequality

d(q, p) + rq ≤ rp , (1)

holds, it is sufficient to check for objects in S1. Similarly, if
the inequality

d(q, p) − rq > rp , (2)

holds true, it is sufficient to check objects within S2. If
the margin between regions S1 and S2 is large, either the
inequality of (1) or (2) probably holds, i.e., we can prune
region S2 or S1. On the other hand, if the boundaries be-
tween S1 and S2 are close to each other, we need to check
the objects within both S1 and S2 for a query around the
boundaries, even when the centers of S1 and S2 are far from
each other. This leads us to conduct research to come up
with a pivot selection method that is based on a large margin
criterion.

To find pivots that divide the space into regions with a
large margin, we first make hierarchical clusters that recur-
sively divide the space into two regions. Currently, we use
OPTICS [2], which is a density-based clustering method, in
this step. To handle a large dataset, we use OPTICS on a
randomly sampled dataset. Then, for each division, we find
a pivot that separates the clusters with a large margin.

3.1 OPTICS
OPTICS is a kind of density-based Clustering [2]. OP-

TICS constructs hierarchical clusters with arbitrary shapes.

Figure 1: Pivot Selection in the MMMP

It automatically determines the number of clusters. The
most important reason that we use OPTICS is to extract
arbitrarily-shaped clusters while using only the distances be-
tween objects. Thus, other schemes such as k-means and
BIRCH are not appropriate for MMMP. Moreover, the rea-
son we require a hierarchical scheme is to order the cluster
branches from a large margin one to small ones. That is, it
executes a rough indexing.

3.2 Pivot Selection and Partitioning
MMMP aims to achieve effective search pruning. We fo-

cus on the partitioning surfaces and the data distribution
patterns to achieve this requirement. We maximize the dis-
tances between the partitioning surface and its closest ob-
jects, because the objects can be clearly classified. We divide
the space on the basis of the OPTICS’s clustering results be-
cause it effectively separates small dense regions. Therefore,
we try to find partitioning surfaces that are between pairs
of cluster boundaries that are at maximum distances from
the cluster boundaries. However, we cannot directly de-
tect the partitioning surfaces in a metric space, because the
partitioning surfaces are created by pivots. Thus, MMMP
basically searches for a pivot object that divides the clusters
obtained by OPTICS with the largest margin.

From the clustering results determined by using OPTICS,
we construct hierarchical clusters represented by a binary
tree. Each node in the tree corresponds to a subspace and
it is further divided into two subspaces represented by its
child nodes. For each node v in the tree, we extract a pivot
in the following way. For an object p, let CNear (resp. CFar)
denotes the v’s child cluster that is closest to (resp. far from)
p. Then, MMMP chooses the following object as a pivot

pivot = argmax
p∈S

„
min

of∈CFar
d(p, of ) − max

on∈CNear
d(p, on)

«
.

(3)
The first term in the right hand side of this formula repre-
sents the distance to the nearest object in CFar, whereas the
second term is the distance to the farthest point in CNear.
Therefore, the right hand side of Eq. (3) represents a kind
of margin. Even if a cluster is partitioned into more than
two regions in a cluster branch, MMMP merges them and
then divides it into two regions. In that case, all the region
combination cases are considered, and the highest scoring
candidate is selected.

The reason why only one object in each cluster is used
for distinguishing between CNear and CFar is as follows. One



reason is to reduce the computational cost for this operation.
The other reason is that the pivot candidates evaluated with
the incorrect label clusters have no influence on the pivot
selection. These pivot candidates are not relevant to the best
pivot in most cases, and would finally be removed at Eq (3).
Of course, when there is no relevant pivot candidate in the
data, this distinction does not work well and the evaluation
of a pivot may be a minus value. The partitioning distance
Distance(p) of the pivot is defined as

Distance(p) =
1

2

„
min

of∈CFar
d(p, of ) + max

on∈CNear
d(p, on)

«
.

(4)
Fig. 1 shows the image of the pivot selection in the MMMP.

3.3 MMMP-Index
Our indexing scheme, named MMMP-Index, uses MMMP

and small ball partitioning. As we described in the preced-
ing section, MMMP is designed to prune regions irrelevant
to the query in a clustered data space. However, MMMP
does not work well when the number of clusters in the data
space is too small or the size of any one cluster is too large.
The number of objects managed by a pivot is related to the
performance of the index. Therefore, we make the MMMP-
Index divide a large cluster into small enough regions to be
controlled by pivots like LC [4].

The index is implemented by two B+-trees. One B+-tree
manages two kinds of pivots; the pivots selected by MMMP
and those chosen by small ball partitioning. The pivots form
a tree structure. Each pivot has its own ID, and hold the IDs
of its leaf pivots. The smaller ID is assigned to the earlier
selected pivot. Their keys are also based on their IDs. The
other B+-tree stores objects. The object key is measured by
d(obj, p) + IDp × c, where p is the pivot that manages the
object and c is a parameter that is sufficiently larger than
the distance between objects. With these key definitions,
when we search for objects whose distances from the pivot
are within a certain range, we can sequentially access the
disk and can reduce the page access cost.

3.4 Index Construction Cost
The MMMP-Index is constructed by (a) the hierarchical

clustering, (b) the pivot selection for each partitioning of
a cluster in the hierarchy, and (c) the ball partitioning of
the leaf clusters. Step (a) requires a O(n log n) to O(n2)
calculation by OPTICS [2]. Step (b) requires O(n2), and
step (c) does from O(m log m) to O(m2), where m is the
size of the maximum leaf cluster [4]. Generally m is much
less than n, so steps (a) and (b) are the dominant parts of the
indexing construction. On the other hand, LC requires from
O(n log n) to O(n2) [4]. So, the computational complexity
for constructing the MMMP-Index is the same as the worst
case of LC. Actually the indexing time for MMMP-Index
was almost the same as that for LC in our experiments.

4. PERFORMANCE EVALUATION
We conducted two experiments evaluated the partitioning

performance of MMMP and the indexing performance.

4.1 Data Set
The datasets consisted of synthetic vectors generated by

us, and real vector datasets named Corel Image Features
downloaded from the UCI KDD Archive [1]. We generated

2, 8, and 16-dimensional clustered vectors for the evaluation.
The cluster centers of the clustered vectors were randomly
selected. The numbers of the centers were 10, 20, and 30.
The number of objects was randomly chosen for each cluster.
The objects in the cluster were based on the normal distri-
bution. Its standard deviations were randomly set from 0 to
0.10 and from 0 to 0.20. According to the previous studies
[4], the size of the data were 100,000. Queries were randomly
chosen from the same distribution as the data set. When the
chosen query happened to be the same point in the data set,
we discarded it. The ranges of a query were the distances
to the k nearest neighbor objects. k ranged from 5 to 100.

4.2 Partitioning Performance
MMMP selects a pivot on the basis of the cluster shapes

because the partitioning surface of the pivot was in a sparse
space. We compared MMMP with D-Index [5] and iDis-
tance [6]. D-Index selects a pivot on the basis of the mean
distances between the pivot and objects, and recursively di-
vides the space using Excluded Middle Partitioning. iDis-
tance divides the space with a Voronoi partition based on
k-means clustering, and sets the cluster centers as the piv-
ots. To improve the search pruning and reduce the search
cost, a query should refer to a smaller number of regions
partitioned by the pivots. Thus, we evaluated these costs at
the points of the accessed regions for the query. The cluster-
ing in MMMP was computed using 20,000 random samples
from the dataset. The number of clusters in iDistance was
set from 4 to 64. The reason we present so many instances
of iDistance is that it cannot define an appropriate num-
ber of clusters from the data, and the cluster number was
a very important factor in this experiment. The partition-
ing distance parameter in D-Index was set according to the
shortest search response time. Each result was the average
over 1,000 queries of its dataset.

Fig. 2 shows the results. The vertical axes represent the
number of accessed regions. The horizontal axis is the query
ranges. The number for each line in the legend represents
the parameter for indexing. The numbers for MMMP and
iDistance are the numbers of clusters, and the numbers for
the D-Index are the partitioning distances of the exclusion
sets. The results show that the MMMP minimizes the num-
ber of regions over which a query is in every data. The
number of accessed regions was approximately one from the
MMMP results.

Although the results seem to be sufficient enough for the
partitioning evaluation, it is unclear whether MMMP effec-
tively divides the space for search pruning. We need to find
out whether the sizes of the regions are appropriate. To
give an example of a bad situation, if one region is very
large and the others are very small, a query may be over
only the large region. However, it is difficult to see if this is
the case, because the standard deviations and the number of
objects in each cluster of the datasets are randomly selected.
Therefore, we conducted another experiment to evaluate the
indexing performance. We show in Sec. 4.3 how the MMMP
reduces the page access cost and the computational cost by
pruning the search.

4.3 Index Performance
We conducted experiments to evaluate the MMMP-Index

together with MMMP. We compared the MMMP-Index with
iDistance [6], D-Index [5], and LC [4]. As in the related work



[10], the indexes’ performances were evaluated in terms of
the page access and computational costs. The parameters
of each scheme were set on the basis of the shortest search
response time. According to the previous studies [6], the
page size needed for estimating the page access cost was
4096 bytes. Each result was the average over 1,000 queries
of its dataset.

In each figure, the red line is the MMMP-Index, the green
line is LC, the blue line is D-Index, and the pink line is
iDistance. It is clear that the MMMP-Index is superior to
the other schemes for indexing clustered data. To take the
results for 8-dimension clustered vectors as an example, the
computational cost of the MMMP-Index is less than two
thirds that of the other schemes. Comparing Fig. 3 with
Fig. 4, the computational cost of the MMMP-Index for the
clustered data with 20 clusters is almost half that of the data
with 10 clusters. The page access cost of the MMMP-Index
is also less than the other schemes. The results in Sec. 4.2
and in this section prove that MMMP is useful for clustered
vectors. MMMP achieves effective partitioning by exploiting
knowledge about the data distribution.

5. CONCLUSION
We developed MMMP as a means of pivot partitioning for

the purpose of pruning in a similarity search index. MMMP
divides data based on the cluster shapes extracted by using
OPTICS. During partitioning, MMMP looks for an object
to be the best pivot whose partitioning surface maximizes
the distances from the cluster boundaries. We also created
an index, named the MMMP-Index. MMMP is most effec-
tive when the indexed data is clustered. We are currently
working on reducing the pivot selection cost.

6. REFERENCES
[1] Uci kdd archive, http://kdd.ics.uci.edu/.

[2] M. Ankerst, et al. Optics: ordering points to identify
the clustering structure. In SIGMOD, 1999.

[3] B. Bustos, et al. Pivot selection techniques for
proximity searching in metric spaces. Pattern
Recognition Letters, 24(14):2357–2366, 2003.

[4] E. Chevez et al. A compact space decomposition for
effective metric indexing. Pattern Recognition Letters,
24(9):1363–1376, 2005.

[5] V. Dohnal, et al. D-index: Distance searching index
for metric data sets. Multimedia Tools and
Applications, 21(1):9–33, 2003.

[6] H. V. Jagadish, et al. idistance: An adaptive b+-tree
based indexing method for nearest neighbor earch.
ACM Trans. on Database Systems, 30(2):364–397,
2003.

[7] O. Pedreira et al. Spatial selection of sparse pivots for
similarity search in metric spaces. In SOFSEM, 2007.

[8] J. Venkateswaran, et al. Reference-based indexing of
sequence databases. In VLDB, 2006.

[9] P. N. Yianilos. Data structures and algorithms for
nearest neighbor search in general metric spaces. In
SODA, 1993.

[10] P. Zezula, et al. Similarity Search: The Metric Space
Approach. Springer-Verlag New York, Inc., 2005.

[11] Y. Zhuang, et al. Indexing high-dimensional data in
dual distance spaces: a symmetrical encoding
approach. In EDBT, 2008.

(a) 2D, 20 clusters,σ:(0,0.10) (b) 8D, 10 clusters,σ:(0,0.10)

(c) 8D, 20 clusters,σ:(0,0.10) (d) 8D, 20 clusters,σ:(0,0.20)

(e) 8D, 30 clusters,σ:(0,0.10) (f) 16D,20 clusters,σ:(0,0.10)

Figure 2: Partitioning Performance

(a) Page Access Cost (b) Computational Cost

Figure 3: 8D, 10 clusters, σ:(0,0.10)

(a) Page Access Cost (b) Computational Cost

Figure 4: 8D, 20 clusters, σ:(0,0.10)

(a) Page Access Cost (b) Computational Cost

Figure 5: Corel Image Features


