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Optimal Pivot Selection Method Based on the Partition and the
Pruning Effect for Metric Space Indexes
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SUMMARY This paper proposes a new method to reduce the cost of
nearest neighbor searches in metric spaces. Many similarity search indexes
recursively divide a region into subregions by using pivots, and construct a
tree-structured index. Most of recently developed indexes focus on pruning
objects and do not pay much attention to the tree balancing. As a result, in-
dexes having imbalanced tree-structure may be constructed and the search
cost is degraded. We propose a similarity search index called the Parti-
tioning Capacity (PC) Tree. It selects the optimal pivot in terms of the PC
that quantifies the balance of the regions partitioned by a pivot as well as
the estimated effectiveness of the search pruning by the pivot. As a result,
PCTree reduces the search cost for various data distributions. We experi-
mentally compared PCTree with four indexes using synthetic data and five
real datasets. The experimental results shows that the PCTree successfully
reduces the search cost.
key words: pivot selection, similarity search, metric space

1. Introduction

Similar object search is a key function for speeding up vari-
ous algorithms. For example, image completion algorithms
fill in the missing regions in images by searching for simi-
lar image regions from a large photo dataset [12]. Applica-
tions using such algorithms require an efficient similar ob-
ject search algorithm to reduce the query execution cost.

Similarity search indexes are used for pruning objects
dissimilar to a query [26], and reduce the search cost, such
as the distance computations and the disk accesses. Indexes
that are based on a metric space can be applied to all types of
data whose distances obey the metric space postulates such
as the triangle inequality. Most indexing schemes use ref-
erence objects called pivots. They recursively divide a re-
gion into subregions by using pivots, and construct a tree
structure index. That is, the methods of selecting pivots
and dividing up the space by using these pivots determine
the index structure and pruning performance. The existing
pivot selection studies have mainly focused on increasing
the number of pruned objects at a branch in the tree [6].
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However, most previous works do not take into account the
balance of the tree. Tree balancing techniques are used
in database management systems (DBMSs), and it is well
known that the tree height reduction contributes to reduce
the average search cost [5]. Thus, even if the pivots of the
methods are enough good for pruning objects at the branch,
the effect of search cost reduction may be limited according
to the data distribution of a database. Therefore, we devel-
oped a new pivot selection method for optimizing both the
pruning and the balancing [18]∗.

The main contributions of this paper are as follows.

• We propose a new information theoretic criterion
called the Partitioning Capacity (PC) for pivot selec-
tion. The PC takes both the object pruning effect and
index tree balance into account.
• We developed a metric space index called the Parti-

tioning Capacity Tree (PCTree). The PCTree provides
the necessary functions for constructing an index tree
based on PC and for efficiently retrieving similar ob-
jects using the index tree.
• We show the efficiency of PCTree empirically through

several experiments where we compared the PCTree
with several metric space indexes using synthetic
multi-dimensional data and five real datasets.

2. Related Work

Let M = (D, d) be a metric space defined for a domain of
objects D and a distance function d : D × D �→ R. The
Minkowski distance, Jaccard’s coefficient, and the edit dis-
tance are examples of the distance function d. Our index
deals with the space and these distances.

The early indexing schemes of similarity searches used
balanced tree structures. Vantage Point Tree (VPT) divides
a region into two subregions based on the distance from a
pivot [24]. Its distance is set for equally partitioning the ob-
jects in the region, so that the two subregions contain the
same number of objects. Thus, VPT is a completely bal-
anced binary tree. However, the early indexes are weak at
pruning objects while searching. They selects pivots that are
far away from the other objects and other pivots by using
simple statical features, such as the variance.

Some indexing schemes focus on pruning dissimilar
∗This paper is the extended version of [18]. In this paper, we

describe the indexing technique in details and add experiments us-
ing synthetic data to clarify the characteristics of the PCTree.
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objects rather than balancing the tree. Some schemes use
other partitioning techniques instead of Ball partitioning.
Vantage Point Forest (VPF) [25] and D-Index [11] divide a
region into three subregions according to the distance from
the pivot. They aim to exclude the middle area in the region
because it is difficult to judge whether objects in this area are
similar or dissimilar to a query. Generalized Hyper-plane
Tree (GHT) [23] divides the space by using a hyper-plane
equidistant from the two pivots.

Other schemes improve the pivot selection. Many stud-
ies have attempted to select pivots that are distant from the
other objects and other pivots [6], [24]. These methods used
the variance [24], the mean [7], [11], the sum [10], and the
ratio [22]. iDistance [13] selects pivots based on the clus-
tering result and reduces the number of regions accessed
during a search. OMNI-Family [15] chooses a set of piv-
ots based on the minimum bounding region. MMMP [17]
has a pivot selection based on the maximal margin, and it
classifies dense regions. Moreover, some methods combine
different pivot selection techniques [19], [27].

Still other schemes propose various index structures.
Fixed Queries Array [8] is an array of distances between ob-
jects and pivots and it is used to save memory. List of Clus-
ters (LC) [9] is a list of compact regions. It recursively di-
vides the space into a compact region. iDistance consists of
a list of pivots and a set of B+-trees for storing objects. Thus,
its index structure is partially balanced. Although the B+-
trees are balanced, the pivots are linearly accessed. Spatial
Approximation Tree (SAT) [20] approximates a graph and
uses pivots for approaching the query spatially. M-Tree [10]
is a dynamic tree structure with object insertion and dele-
tion. Slim-Tree [16] minimizes the overlap space managed
by node in M-Tree.

We focus on the pivot selection method in this paper.
The simple statistics-based approach [6], [24] aims at deter-
mining the various distances between the pivot and each
object and reducing the number of useless pivots. How-
ever, they don’t consider the partitioning boundary of the
pivot and the selected pivot may not be good for pruning.
The clustering-based approach [13], [17] aims at selecting a
pivot and its partitioning boundary based on the clusters in
the dataset. Although it can select better pivots for prun-
ing than the simple statistics-based approach, it doesn’t take
into consideration the tree balancing. An imbalanced index
tree increases the average search cost. Thus, we aim at re-
ducing the search cost by taking both the object pruning and
the tree balance into account. For this purpose, we extract
even more information concerning the data distribution.

3. Partitioning Capacity Tree

This section proposes PCTree, a similarity search index for
a metric space. The index is designed for nearest neighbor
searches and aims at reducing the search cost for various
data distributions. It selects pivots that have effect on prun-
ing objects as well as balancing the index tree. It classifies
the space with two criteria for measuring a pivot (Fig. 1).

Fig. 1 Labels for measuring the PC.

3.1 Partitioning Capacity

We first introduce a measure of a pivot called PC. It repre-
sents the expected index performance for a given query dis-
tribution. We assume that both the queries and objects in the
database are drawn from the same probability distribution.

For a metric space M = (D, d) and a region R ⊆ D in
the space, suppose that a pivot p and its partitioning distance
rp divide R into two subregions:

R1(p, rp) = {o ∈ R | d(o, p) ≤ rp},
R2(p, rp) = {o ∈ R | d(o, p) > rp} . (1)

We respectively refer to R1(p, rp) and R2(p, rp) as an inside
region and an outside region with respect to pivot p and dis-
tance rp.

For a query q, let X be the random variable that repre-
sents the region in which q is included, that is,

X = Xi,p,rp if q ∈ Ri(p, rp) (i = 1, 2) . (2)

We call P(X) a partitioning distribution. Since we assume
that a query is drawn from the same distribution as the
database, we estimate the partitioning distribution as

P(Xi,p,rp ) =
|S Ri(p,rp)|
|S R| (i = 1, 2) , (3)

where S R denote the sets of database objects that are in the
region R.

Similarly, we define the pruning distribution of the
query. For a set S of objects in the database and an object o
in the region R, let ro,k,S denote the distance between o and
o’s kth nearest neighbor in S . Let us consider the following
three regions:

R′1(p, rp, k) = {o ∈ R | d(o, p) + ro,k,S ≤ rp} , (4)

R′2(p, rp, k) = {o ∈ R | d(o, p) − ro,k,S > rp} , (5)

R′3(p, rp, k) = R − R′1(p, rp, k) − R′2(p, rp, k) . (6)

Intuitively, R′1(p, rp, k) is the set of the objects whose k-
nearest neighbor objects are within R1(p, rp). This means
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that, if a query q belongs to the region R′1(p, rp, k), we
can prune R2(p, rp) when executing the k-nearest neighbor
search. Similarly, R′2(p, rp, k) is the set of the objects whose
k-nearest neighbor objects are within R2(p, rp). We respec-
tively refer to R′1(p, rp, k), R′2(p, rp, k), and R′3(p, rp, k) as an
inside-safe region, an outside-safe region, and a boundary
region w.r.t the pivot p, the distance rp, and the number k
of nearest neighbors. Let Y be a random variable that repre-
sents the region in which the k-nearest neighbor ranges of q
is included, that is,

Y = Yi,p,rp,k if q ∈ R′i(p, rp, k) (i = 1, 2, 3) . (7)

We call P(Y) a pruning distribution. We estimate the distri-
bution as

P(Yi,p,rp,k) =
|S R′i (p,rp,k)|
|S R| (i = 1, 2, 3) . (8)

By using the two random variables X and Y , the PC for
a pivot p is defined as

PCk(p)

≡ max
rp

I(X; Y)

= max
rp

(∑
i

∑
j

(
P(Xi,p,rp ,Yj,p,rp,k)

· log

(
P(Xi,p,rp ,Yj,p,rp,k)

P(Xi,p,rp )P(Yj,p,rp,k)

)))
, (9)

where I(·; ·) is the mutual information. We choose the object
p (resp. distance rp) that maximizes Eq. (9) as a pivot (resp.
partitioning distance).

The mutual information satisfies

I(X; Y) = H(X) − H(X | Y) ≤ H(X) , (10)

I(X; Y) = H(Y) − H(Y | X) ≤ H(Y) , (11)

where H(·) is the entropy. The PC represents the mutual in-
formation of the random variables for the partitioning and
pruning distributions. We define the PC usage by using
Eq. (10). H(X) represents the entropy of random variable
X for the partitioning distribution. It represents the balance
of the partitioned regions. When we set the partitioning with
a larger entropy, the index tree is balanced and is closer to a
complete binary tree. A balancing tree is good for reducing
the average search cost. H(X | Y) represents the entropy of
the probability X under the condition Y , where Y is the ran-
dom variable for the pruning distribution. The pruning dis-
tribution classifies a region into three subregions on the basis
of the pruning. For a query in the inside-safe region (resp.
the outside-safe region), the pivot can prune the outside re-
gion (resp. the inside region). For a query in the boundary
region, the pivot cannot prune objects. From the definition,
the inside-safe region (resp. the outside-safe region) is in-
cluded in the inside region (resp. the outside region). The
boundary region is part of the inside and the outside region.
Thus, when the boundary region gets smaller, H(X | Y) de-
creases. We use H(X|Y) for estimating the effectiveness of

the pruning. We define the effectiveness of both the balanc-
ing and pruning by using entropy and we avoid considering
their weights. The criterion for the PC is inspired by the for-
mula of the channel capacity of a binary erasure channel in
the information and coding theory [14].

3.2 PCTree Construction

PCTree has a tree consisting of internal nodes and leaves.
An internal node is associated with one pivot and its parti-
tioning distance whereas a leaf node is associated with one
pivot and the objects. This section shows an outline of the
index construction process. Details of some of the steps are
described in the following subsections.

In the indexing phase, PCTree recursively divides a re-
gion into its inside and outside subregions by using pivots.
For a metric space M = (D, d) and a set S of objects, the
PCTree constructs an index by

1. selecting a pivot candidate set S p from S (Sect. 3.4 for
details), and

2. dividing D recursively into inside and outside regions.

We first select the most effective pivot candidates S p be-
cause a database usually contains large amount of objects
and calculating PC for all these objects is computationally
infeasible. Note that the pivot candidate selection is done
once before constructing an index.

For a region R and set of objects S , we recursively ex-
ecutes the following procedure P(R):

1. if the stopping condition described in Sect. 3.3 is satis-
fied,

a. choose a pivot p randomly from S R,
b. make a sorted list L of objects in S R according to

the distance from p, and
c. return a leaf node associated to p and L

2. otherwise

a. choose predefined number m of samples T from
S R randomly,

b. select the pivot p ∈ S p and its partitioning dis-
tance rp which maximize the PC given by Eq. (9)
for the random samples T ,

c. call the region partitioning function with the in-
side and the outside regions w.r.t. p and rp, and
obtain the respective node v1 := P(R1(p, rp)) and
v2 := P(R2(p, rp)), and

d. return an internal node v associated with the pivot
p, partitioning distance rp and child nodes v1, v2.

We use random samples T instead of RS in step 2-(a) to
reduce the computational cost of the pivot selection.

3.3 Condition for Stopping the Partition

Let us consider the minimum PC for stopping partitioning.
If we do not use a similarity search index, the search requires
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O(N) distance computations by using the linear scan method
where N is the number of objects in the database. Therefore
we should not use PCTree if its estimated number of dis-
tance calculations is higher than the naive sequential access
method. Thus, we define the minimum PC for filtering in-
appropriate pivot candidates that has less search effect than
the naive method. For measuring the PC of the pivots in the
linear scan method, we regard the method as that in which
all the objects in the dataset are pivots and each pivot prunes
itself while searching. Therefore we set the minimum PC
as

MinimumPC(S ) = − 1
|S | · log 1

|S | − |S |−1
|S | · log |S |−1

|S | , (12)

where S is the object set. When the PCs of the pivot can-
didates in a region are less than the minimum PC, the par-
titioning finishes and the region is set as a leaf node in the
tree. For example, when |S | is 100, P(X1,p,rp ) and P(X2,p,rp )
are 0.5, P(Y1,p,rp,k) and P(Y3,p,rp,k) are 0.04, and P(Y3,p,rp,k)
is 0.92, the PC is about 0.080 and the minimum PC is about
0.081, so that the partitioning stops.

3.4 Sampling the Pivot Candidates

The indexing algorithm of PCTree is a kind of greedy al-
gorithm. It incurs a heavy construction cost for finding the
optimal pivot and its partitioning distance. We reduce the
cost by sampling the pivot candidates.

We select pivot candidates such that they are separated
from each other by a certain distance dp. The reason why we
apply it to the sampling of the pivot candidates is as follows.
For pivot candidates p1 and p2, the distance from p2 to an
object o satisfies

|d(p1, o) − d(p2, o)| ≤ d(p1, p2) . (13)

From the inequality, we can expect that the larger d(p1, p2)
is, the larger the difference between d(p1, o) and d(p2, o)
will be. Thus, we choose objects with the following two
policies:

• the pivot candidates are separate from each other in the
space, and
• the pivot candidates are not selected from the parti-

tioned region but from all the objects in the dataset.

Therefore, we choose a pivot candidate set such that
the distance between any pivot pair in the set is more than
dave · s, where dave is the approximate average distance be-
tween objects and s is a parameter. The approximate average
distance is calculated by using randomly sampled objects.
Pivot candidates are sampled from the data set by perform-
ing the following steps:

1. Let S p, the pivot candidate set, be an empty set. Insert
all the objects in the data set into the object set S .

2. Randomly select an object p from the object set S and
add p to S p.

3. While S is not empty:

• Remove all objects from S whose distances to p
are less than dave · s.
• Select the object p′ that is nearest to p, add p′ to

S p, and set p′ to p.

Let N (resp. n) denote the number of objects in the
dataset (resp. pivot candidates), the cost is at most O(N · n).

3.5 Indexing Cost

We estimate the indexing cost by using the number of dis-
tance computations between objects. The indexing cost con-
sists of the pivot selection cost and the PC calculation cost.
The pivot selection needs to be done once for an index. On
the other hand, the PC calculation needs to be done for every
partition.

As shown in Sect. 3.4, the pivot candidate selection re-
quires O(N · n) distance computations.

The required computations for a partition at a node are
as follows. For an internal node v, let S v denote the set
of objects managed by the subtree rooted at v, and Tv de-
note the randomly sampled m objects from S v. As shown in
Sect. 3.1, two distributions are needed for measuring the PC.
The distance from each object in Tv to its kth nearest neigh-
bor object in S v and the distances from each pivot candidate
in S p to the objects in Tv are needed for measuring the dis-
tributions at a node. The former distance requires at most
O(|S v| · |Tv|) computations. The latter requires O(|Tv| · |S p|)
computations. The total cost for the partitions Costpartition is

Costpartition =
∑
v

(
|S v| + |S p|

)
· |Tv| . (14)

The indexing cost depends on the data distribution and
the sampling parameters. The maximum number of nodes is
O(N). Thus, the indexing cost is at most O(N2).

3.6 k-Nearest Neighbor Search

For the k-Nearest Neighbor searching, the PCTree receives
a query q and the number k of results. The search procedure
is almost the same as for VPT [24] and uses the following
steps:

1. create an empty set as a result set S r and set the query
range rq to∞.

2. traverse from the root node in the PCTree and recur-
sively accesses the nodes in the depth-first way:

a. if the node is a leaf,

i. find the objects whose distances to q are
within rq in the node while using the object-
pivot distance constraint [26], and add them
to S r.

ii. update rq to be the k-nearest neighbor radius
of q in S r.

b. otherwise

i. read the pivot p and its partitioning distance
rp associated to the node.
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Fig. 2 k-Nearest neighbor search.

ii. if the inequality d(p, q) ≤ rp is satisfied,

A. access the child node for the inside re-
gion and update rq.

B. after this, if the inequality d(p, q)+ rq >
rp is satisfied, access the other child
node and update rq. Figure 2 shows a
case where the inequalities d(p, q) ≤ rp

and d(p, q) + rq > rp are satisfied.

iii. if the inequality d(p, q) ≥ rp is satisfied,

A. access the child node for the outside re-
gion and update rq.

B. if the inequality d(p, q) − rq ≤ rp is sat-
isfied, access the other child node and
update rq.

3. answer the k closest objects.

When the balancing and the pruning of the index work best,
the search cost is O(log N).

4. Performance Evaluation

4.1 Outline of Experiments

We implemented PCTree on the Metric Space Library [3].
The library is written in C. It provides several indexing al-
gorithms, metric spaces, and datasets. We compared PC-
Tree with GHT [23], MVP [6], [24], LC [9], and SAT [20],
which are also in the library. As in the related work [20],
the performance of indexes was evaluated by the number of
the distance computations divided by the total number of
objects in the datasets. We conducted the experiment on a
Linux PC equipped with an Intel(R) Quad Core Xeon(TM)
X5492 3.40 GHz CPU and that had 64 GB of memory. The
library and our codes were compiled with GCC 4.2. All the
indexes fit in the memory, as in the related study [20].

We used two types of datasets to evaluate our scheme:
vectors and strings. The vector datasets consisted of syn-
thetic vectors generated by us and four real vector datasets.
The string dataset contained English words. We used the
Euclid distance for the vector datasets and Levenshtein dis-
tance for the string dataset.

Synthetic vectors are generated in 2, 4, 8, 16, 32, and 64-
dimensional feature spaces according to the uniform
and Gaussian mixture distributions. Hereafter, we re-
fer to a dataset consisting of vectors in n-dimensional
space generated according to a uniform (resp. Gaus-
sian mixture) distribution as nd-uniform vectors (resp.
nd-clustered vectors). As for the nd-clustered vec-
tors, we used 100 component Gaussian distributions in
the following experiments if not explicitly mentioned.
The mean vector of the component Gaussian distribu-
tion was randomly selected whereas the covariance ma-
trixes were a diagonal matrix whose diagonal compo-
nents were set to 0.02. The number of objects for each
cluster was randomly chosen. The objects in the cluster
were based on the Gaussian distribution. By referring
to the previous study [9], we chose the size of the data
to be 100,000. We randomly chose 1,000 queries from
the same distribution as the dataset. When the chosen
query happened to be the same point in the dataset, we
discarded it. We use the average number of distance
calculations over these 1,000 queries as the search cost
in the following discussion.

NASA is a set of feature vectors made by NASA [3]. It
consists of 40,150 vectors in a 20-dimensional feature
space.

Color histograms are the color histograms of 112,544
images represented by vectors in 112-dimensional
space [3].

Corel Image Features contains color histogram vectors
generated from the Corel image collection [4]. It con-
sists of 68,040 vectors in a 32-dimensional space.

English dictionary consists of 69,069 English words in the
form of strings and that was generated by [3].

flickr is a set of 2,000,000 images that we downloaded from
flickr. We extracted 960-dimensional features from
each image by using a GIST image descriptor [21] pro-
vided by [2]. This dataset is available from [1].

For each real dataset, we randomly selected 1,000 objects
for the queries and conducted the k-nearest neighbor queries
on the remaining objects. All the real datasets are available
from the Web.

4.2 Synthetic Data

4.2.1 Parameter Tuning

The PCTree requires three parameters during indexing. One
parameter k is for calculating the PC in Eqs. (4), (5) and (6),
and the other parameters s and m are for sampling as shown
in Sect. 3.2 and Sect. 3.4. We evaluated how the sampling
parameters affect the search cost using the 8d-uniform, 8d-
clustered, and 16d-clustered vectors. We also evaluated how
the sampling method affects it by using 2d, 4d, 8d, 16d, 32d,
and 64d-clustered vectors.

The results are shown in Fig. 3. The vertical axes show
the cost for the 1-nearest neighbor search represented by the
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(a) Parameter k (b) Parameter s

(c) Sampling method (d) Parameter m

Fig. 3 Search cost w.r.t. sampling parameters and sampling methods.

relative distance computation. Figure 3 (a) includes the cost
for the 5-nearest neighbors as well. The horizontal axes are
the parameters. We set the search cost with k to be 1, s to
be 0.8, and m to be 500 as the standard values, and plot the
ratio of each search cost to the standard search cost.

As we can see in Fig. 3 (a), a smaller k is better for
all the vectors. Figure 3 (b) shows the search cost w.r.t
the parameter s that controls the candidate pivot size (see
Sect. 3.4). Intuitively, a smaller s means more candidates are
selected, and consequently, a lower query cost is achieved
in the query processing. However, this requires more com-
putations for the index construction. As we can see in the
figure, s has the largest influence on the search cost. This
indicates that more pivot candidates are better for the PC-
Tree. Figure 3 (c) shows the search cost w.r.t. the sampling
method. We compared our method (see Sect. 3.4) with ran-
dom sampling. We can see that our sampling technique
is more important for the larger dimensional vectors. Fig-
ure 3 (d) shows the search cost w.r.t the parameter m that
determines the sample size when estimating the partitioning
capacity described in Sect. 3.2. As we can see in the fig-
ure, m only slightly affects the search cost and 500 samples
seems to be sufficient.

From these experiments, we decided to set k, s, and m
to 1, 0.8, and 500, respectively, in the index performance
evaluations.

4.2.2 Dataset Size

We evaluated the index structure and the performance with
respect to the number of objects by using 2d, 4d, 8d, 16d,
and 32d-clustered vectors.

Figure 4 (a) shows the search cost of the PCTree. Fig-
ure 4 (b) compares the search cost with the 8d-clustered vec-
tors. As in the related study [20], the search cost was eval-
uated as the percentage of objects examined. The vertical
axes represent the cost for the 1-nearest neighbor queries.
The horizontal axes are the number of objects.

From the results, we can see that the percentage of ob-
jects examined decreases as the dataset increases. The sub-
linearity of the search cost with respect to the number of
objects is clear. Furthermore, we can see that the PCTree
outperforms the other methods for a large amount of vec-
tors. Figure 4 (c) shows how the dataset size affects the pivot
candidate selection. The vertical axis represents the number
of pivot candidates. The horizontal axis is the number of ob-
jects. We can see that the number of pivot candidates does
not vary with the dataset size. The dimension has more in-
fluence on it.

Figures 4 (d), (e), and (f) show the index construction
cost, the number of nodes, and the index height, respec-
tively. The construction cost was evaluated by using the
number of distance computations per object during index-
ing. Since we did not cache calculated distances, the dis-
tances between two objects may be calculated more than
once. As we can see in the figure of the index construction
cost, the number of required distance calculations is almost
sublinear to the number of objects. From the figures of the
index structure, we can see that both the number of nodes
and index height are almost sublinear to the number of ob-
jects. We interpret this as the index tree is imbalanced for
clustered vectors and the index does not increase linearly
with respect to the number of objects. The index cost of the
PCTree is at most O(N2) (see Sect. 3.5), and the actual cost
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(a) Search Cost of PCTree (b) Search Cost (8d-clustered) (c) No. of Pivot Candidates

(d) Indexing Cost (e) No. of nodes (f) Index Tree Height

Fig. 4 Index performance w.r.t. number of objects.

is smaller than that. However, as we said, the coefficient
is large and the indexing takes a long time. One reason is
that all the PC calculations use the same pivot candidate set
and the same sampling parameters in the PCTree construc-
tion. We have to improve the sampling and the indexing
algorithm and reduce the indexing cost.

4.2.3 Dimension

We evaluated the index structure and the performance with
respect to the number of dimensions. We used 2d, 4d, 8d,
16d, 32d, and 64d-clustered vectors as well as uniform vec-
tors in each dimensional space in this experiment.

Figures 5 (a) and (b) show the search costs of the clus-
tered and uniform vectors, respectively. The vertical axes
represent the number of distance computations for the 1-
nearest neighbor queries whereas the horizontal axes are the
number of dimensions. We can see that PCTree, GHT, and
MVP achieve good performance for lower dimensional vec-
tors regardless of the data distribution. For higher dimen-
sional clustered vectors, PCTree keeps outperforming the
compared methods, but the performance of GHT and MVP
is degraded. For higher dimensional uniform vectors, the
costs of all three methods are large. In contrast, that of
LC is large for lower dimensional vectors and is small for
higher dimensional vectors. The PCTree is superior to the
other methods for various dimensional vectors, except for
the uniform vectors in a high dimensional space whereby
the performance of the PCTree is almost the same as those
of the other methods.

Figure 5 (c) (resp. Fig. 5 (d)) show the number of nodes
and height of the index for clustered (resp. uniform) vectors.
The horizontal axes are the numbers of dimensions. The dif-

ference between the maximum tree height and average tree
height of the lower dimensional vectors is smaller. That is,
the index trees of the lower dimensional vectors are well-
balanced binary trees. On the other hand, the tree is likely
to be imbalanced for high dimensional vectors. The small
number of nodes relative to the tree height also shows the
imbalance of the tree for high dimensional vectors. We in-
terpret this as the PCTree changes the weights of the prun-
ing and balancing according to the data distribution. For
64d-uniform vectors, no partition was done by the PCTree
because the PC in the first partition was under the minimum
PC and the PCTree judged there was no effective partition
for the dataset. Compared with the other methods, the PC-
Tree for the low dimensional vectors is similar to MVP as
MVP is a completely balanced tree. The PCTree for the
high dimensional vectors is close to LC as LC is a list and
is the most imbalanced index. GHT doesn’t use the parti-
tioning distance and its balance depends on only its pivots.
Thus, GHT cannot adjust the index balance and is funda-
mentally different from the PCTree. SAT is also different
from the PCTree because the fan out of SAT tends to in-
crease for the high dimensional vectors and consequently its
height decreases.

Figure 5 (e) shows the index construction cost of the
clustered vectors. It compared with other indexes. The ver-
tical axis is the number of distance computations per object
during indexing. For all the dimensional vectors, we can see
that the PCTree require the largest indexing cost in the in-
dexes. The indexing cost of MVP is the lowest. As shown in
Sect. 3.5, the calculation of the PC causes a lot of distance
computations. The cost of the PCTree is larger for a higher
dimensional vectors. This is because the number of pivot
candidates is larger for a higher dimensional vectors as we
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(a) Search Cost (Clustered) (b) Search Cost (Uniform)

(c) Index Structure (Clustered) (d) Index Structure (Uniform) (e) Indexing Cost (Clustered)

Fig. 5 Index performance w.r.t. number of dimensions.

(a) Search Cost (b) Index Structure

Fig. 6 Index performance w.r.t. the number of clusters.

see at Fig. 4 (c).

4.2.4 Number of Clusters

We evaluated the index structure and the performance with
respect to the number of clusters. We used 32d-clustered
vectors generated by the mixture distributions with 10 to 200
Gaussian models whose variance was 0.02.

Figure 6 (a) shows the search cost. The vertical axis
represents the number of distance computations for the 1-
nearest neighbor queries. The horizontal axis is the num-
ber of clusters. The PCTree achieved the optimal perfor-
mance for 50 clusters. This means that the margins between
clusters would be large enough until the number of clusters
reached 50, and the search cost is smaller for the vectors
with more clusters. The PCTree could divide the space for
the vectors with less than 50 clusters, and it could correctly
access the small number of regions that were relevant to the
query. However, the PCTree could not find good partitions

for pruning for the vectors with more than 50 clusters be-
cause many clusters overlapped each other. It seems that the
distribution of the vectors with 200 clusters is similar to that
of the uniform vectors. Note that the PCTree outperforms
the other methods for a wide range of cluster numbers ex-
cept for 200. Even in this case, it still outperformed all the
other methods except for LC. Figure 6 (b) shows the index
structure. We can see the index tree height and the num-
ber of nodes increase with respect to the number of clusters.
This means that the PCTree is likely to find more partitions
that satisfy the partition condition defined by the minimum
PC for data consisting of more clusters.

4.3 Real Data

We compared the PCTree with other methods for five real
datasets. Figure 8 shows the index performances for the
real dataset. The vertical axis represents the number of dis-
tance computations for the k-nearest neighbor queries where
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(a) NASA (b) Color histograms (c) Corel Image Features

(d) English dictionary (e) flickr

Fig. 7 Distance densities.

Table 1 Real dataset.
Nasa Color histograms Corel Image Features English dictionary flickr

Distance Euclid Euclid Euclid Levenshtein Euclid
Dimension 20 112 32 - 960

Average 1.48 0.415 0.564 8.35 2.12
Variance 0.211 0.0310 0.0332 4.10 0.591
Skewness 0.0447 0.828 0.444 0.271 0.972
Kurtosis 2.39 3.57 3.08 3.17 5.02

(a) NASA (b) Color histograms (c) Corel Image Features

(d) English dictionary (e) flickr

Fig. 8 Index performance on real datasets.
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k ranges from 1 to 20. The horizontal axis is k.
Figure 7 shows the distance density of each dataset and

Table 1 lists the properties of the distances between the ob-
jects in each dataset. We can see the following points in the
figure and table.

• Only the English dictionary uses the Levenshtein dis-
tance whereas the others use the Euclid distance.
• NASA is in the lowest dimensional feature space and

flickr is in the highest dimensional space.
• The skewness of the Color histograms and flickr is

high.
• The kurtosis of flickr is the highest.
• NASA has a wide range of distances and its skewness

is the lowest.

The PCTree in Fig. 8 outperforms the other methods for
the four vector datasets whereas it outperforms the others
except for LC for the English dictionary dataset. Compared
with the other methods, the PCTree is better than the other
methods for a wide range of data distributions. For example,
MVP is good for NASA and flickr, but is weak for the En-
glish dictionary. On the other hand, LC is good for the En-
glish dictionary, but is weak for NASA. GHT and SAT are
not good for any of the datasets. The flickr results show that
all the indexes find similar objects by examining less than
20% of the objects in the dataset. From the flickr results and
Sect. 4.2.3, we interpret that the metric space indexes can
handle a high dimensional dataset if some of its dimensions
are meaningless. For concluding the relationship between
the distribution and the index performance, we need more
experiments and have to more deeply analyze them and this
will be our future work.

We guessed that the PCTree would need more samples
for calculating the PC for English dictionary. Therefore, we
plotted the search costs for the PCTrees and without sam-
pling in Fig. 8 (d). The figure shows that the search cost
without sampling is close to that of the LC. It is difficult to
determine the appropriate parameters without more knowl-
edge about the data distribution. The parameter tuning of
the PCTree remains a future topic of study.

5. Conclusion

We presented a similarity search index named PCTree. PC-
Tree is based on maximizing both the pruning and balance.
We defined the Partitioning Capacity (PC) for selecting a
pivot and its partitioning in PCTree. By using the PC, PC-
Tree automatically optimizes the index structure according
to the data distribution and reduces the search cost when us-
ing the PC.

We are currently attempting to improve the sampling
scheme for pivot candidates. Having more pivot candidates
can help to reduce the search cost. However, as the number
of candidates increases, the indexing cost also increases. We
have to reduce the indexing cost of PCTree before we can
use it in practical situations.
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