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Margin-Based Pivot Selection for Similarity Search Indexes

Hisashi KURASAWA†a), Daiji FUKAGAWA†b), Atsuhiro TAKASU††c),
and Jun ADACHI††d), Members

SUMMARY When developing an index for a similarity search in met-
ric spaces, how to divide the space for effective search pruning is a funda-
mental issue. We present Maximal Metric Margin Partitioning (MMMP),
a partitioning scheme for similarity search indexes. MMMP divides the
data based on its distribution pattern, especially for the boundaries of clus-
ters. A partitioning boundary created by MMMP is likely to be located
in a sparse area between clusters. Moreover, the partitioning boundary is
at maximum distances from the two cluster edges. We also present an in-
dexing scheme, named the MMMP-Index, which uses MMMP and pivot
filtering. The MMMP-Index can prune many objects that are not relevant
to a query, and it reduces the query execution cost. Our experimental re-
sults show that MMMP effectively indexes clustered data and reduces the
search cost. For clustered data in a vector space, the MMMP-Index reduces
the computational cost to less than two thirds that of comparable schemes.
key words: similarity search, indexing, metric space

1. Introduction

The purpose of our research is to reduce the query execution
cost of a similarity search in metric spaces. Although a large
number of studies have been made on indexing techniques
for similarity searches, only a few exploit the data distribu-
tion in a metric space to divide the search space. Our goal
is to develop a new partitioning scheme based on the data
distribution that can prune the space more effectively.

A similarity search efficiently finds objects that are
similar to a query from a large dataset [1]. Similarity
searches based on a metric space can be applied to all types
of data whose distances obey metric space postulates such
as the triangle inequality. Therefore, metric space indexes
are very useful for applications that deal with huge amounts
of vectors, strings, graphs, tags, and so on.

Indexing schemes for metric spaces are mainly catego-
rized into Pivot Partitioning and Pivot Filtering. A Pivot
is a reference object in an index. Pivot partitioning divides
the search space into regions by using a pivot to prune some
of the regions during the search. Pivot filtering stores com-
puted distances between a pivot and objects and filters out
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some of these objects during the search. Pivot partitioning
discard the objects included in the regions irrelevant to a
query, and it results in a smaller index because it does not
need to store the distance to an object. Therefore, many
indexing schemes start by dividing the dataset into regions
with pivot partitioning and then use pivot filtering on each
region.

The performance of pivot partitioning depends on the
pivot selection. Pivot selection methods proposed in early
researches were based on heuristics. They asserted that good
pivots should be outliners of the space, because the distances
from a pivot to each object vary and the objects are eas-
ily classified by the pivot [2]. They used simple statistical
features such as the mean and the variance for selecting piv-
ots. However, their choices of pivots are only a little better
than random selection. Recently proposed selection mech-
anisms exploit data distribution (e.g., [3], [4]). These meth-
ods set cluster centers as the pivots and divide the space on
the basis of the distances from the pivots. Although they can
effectively classify dense regions, they only work well on
particular distribution patterns. A cluster may be separated
into multiple regions by a pivot, because their partitioning
boundaries are based on cluster centers rather than cluster
shapes.

We propose a novel method for pivot partitioning called
Maximal Metric Margin Partitioning (MMMP), which can
be adapted to the shapes of data clusters. First, MMMP
constructs hierarchical clusters with arbitrary shapes by us-
ing Density-based Clustering [5]. Then, at each branch b in
the hierarchical structure, it detects the space boundary that
divides the objects in the cluster corresponding to b with the
maximal margin. During this division, MMMP searches for
a pivot object whose partitioning boundary is between clus-
ters and also maximizes the distances to the cluster edges.
Our main contribution is that we have developed a pivot se-
lection for metric spaces that is based on maximal margins
and is effective for clustered data. To the best knowledge
of the authors, this is the first study to exploit the maximal
margins for the pivot selection.

In this paper, we explain how MMMP divides data
for a similarity search index. We also present an indexing
scheme called MMMP-Index, that uses MMMP and pivot
filtering. We evaluated the indexing performance in com-
parison with existing schemes. While our previous paper [6]
showed the partitioning performance of MMMP, this paper
extends the experimental evaluation and assesses the index
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performance.
The rest of the paper is organized as follows. In Sect. 2,

we introduce the background to this study and related work.
Sections 3 and 4 describe MMMP and its indexing scheme.
Section 5 discusses the experimental results. We conclude
in Sect. 6.

2. Background and Related Work

We first describe the notations and definitions used in this
paper with examples of distance measures. We also show
indexing schemes for similarity searches.

2.1 Metric Space and Distance Measure

Our similarity search index deals with all types of data
whose distances obey metric space postulates.

For a domain of objects D and a distance function d :
D × D �→ R that satisfies:

• ∀x, y ∈ D, d(x, y) ≥ 0 (non-negativity)
• ∀x, y ∈ D, d(x, y) = d(y, x) (symmetry)
• ∀x, y ∈ D, x = y↔ d(x, y) = 0 (identity)
• ∀x, y, z ∈ D, d(x, z) ≤ d(x, y) + d(y, z)

(triangle inequality)

we denote a metric space as M = (D, d) [1].
There are various distance functions for various data

types. For example, the Minkowski distance is defined on n-
dimensional vectors. Jaccard’s coefficient and the Hausdorff
distance [7] quantify distances on sets. The quadratic form
distance is adapted to correlated dimensional vectors, such
as color histograms. The edit distance [8] is applied to
strings, such as bibliographic records.

Several similarity queries have been proposed, includ-
ing the Range query, Nearest neighbor query, and Similarity
join. This paper mainly deals with Range queries.

2.2 Indexing Scheme

A similarity search index can reduce the query execution
cost, such as the page access cost and the computational
cost. As mentioned above, many indexing schemes use pivot
partitioning and pivot filtering. In this section, we focus on
pivot selection in pivot partitioning.

Before introducing the various pivot selection tech-
niques, we explain how to divide the space with pivots. Par-
titions are classified into two types from the viewpoint of the
number of required pivots. Ball partitioning uses only one
pivot and divides the space into two subspaces according to
the distance from each object to the pivot [2], [9]. Hence, its
partitioning boundary is spherical. When the space is parti-
tioned into more than two spherical areas, it is called multi-
way ball partitioning or excluded middle partitioning [10]–
[12]. The generalized hyper-plane [9], which is also classi-
fied into this group, uses two pivots, and divides the space
by the hyperplane equidistant from the two pivots.

Next, we list the pivot selection techniques. A better

pivot partitioning requires fewer pivots and prunes more ob-
jects during a search. The early studies selected pivots that
were far away from the other objects and other pivots [2],
[13]. They aimed at getting various distances from the pivot
to each object and discarding useless pivots. Some also tried
to exclude dense regions [12], [14]. These methods used
simple statistical features such as the mean [12], [15], the
variance [2], [14], the sum [16], and the ratio [17].

Recently, researchers have utilized more elaborate
features based on the data distribution. For example,
iDistance [3] clusters the search space and identifies the
cluster centers. Then, it divides the space by using Voronoi
partition, a kind of generalized hyper-plane, by using the
cluster centers as pivots. This helps to reduce the number
of regions accessed during search. In other words, it re-
duces the page access cost. Recent methods not only im-
prove the indexing performance [4], but also deal with par-
allel distributed queries [18]–[20].

The List of Clusters (LC) [21] is another way of ex-
ploiting the data distribution. It divides the space into com-
pact regions, and it recursively excludes the indexed objects
from the space. The radius of partitioning is determined de-
pending on the number of objects inside the partition. In
short, LC adapts the radius in proportion to the data den-
sity. However, it needs more pivots because it uses radiuses
smaller than other schemes. We will mention the details of
it in Sect. 2.3

We think pivot partitioning can further reduce the
search cost by utilizing the data distribution of the objec-
tive dataset. In the existing approaches, skewed data clus-
ters may be separated into multiple regions by pivots, be-
cause their partitioning boundaries are based on cluster cen-
ters rather than cluster shapes. This causes an increase in
query execution cost. Therefore, we developed a new parti-
tioning scheme based on the shapes of the data clusters.

2.3 List of Clusters (LC)

LC consists of many compact regions. It repeatedly selects
a pivot and its partitioning distance to define a region. It
starts with the object set S in the database and selects a pivot
p1 and its partitioning distance rp1 . The pivot p1 and the
distance rp1 define a region

I1 = {o ∈ E, d(p1, o) ≤ rp1 } . (1)

Then, it selects the next pivot and its partitioning distance
for the remaining object set S − I1 and repeats the same
process until the remaining object set is empty. As a re-
sult, a list of tuples (pi, rpi , Ii) is generated. Five pivot
selection schemes and two partitioning distance selection
schemes were considered in [21]. The best performance was
achieved when it selects the pivot such that it maximizes the
sum of distances to previous pivots and it sets the partition-
ing distance on the basis of the number of objects inside the
partition.

For a range query (q, rq), LC computes the distance
from q to the pivot pi. If the inequality
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d(q, pi) − rq ≤ rp , (2)

holds, it exhaustively searches Ii. If the inequality

d(q, pi) + rq ≤ rp , (3)

holds, it continues the search process for the rest of the list.

3. MMMP

For a metric space M = (D, d), suppose a pivot p divides a
set S of objects in D into two regions:

S 1 = {o ∈ S | d(o, p) ≤ rp} ,
S 2 = {o ∈ S | d(o, p) > rp} ,

where rp is the partitioning distance for the pivot p. When
searching for objects within rq from a query object q in
terms of the metric space M, if the inequality

d(q, p) + rq ≤ rp , (4)

holds, it is sufficient to check for objects in S 1. Similarly, if
the inequality

d(q, p) − rq > rp , (5)

holds true, it is sufficient to check objects within S 2. Let
C1 and C2 be the largest clusters in S 1 and S 2, respectively.
If the margin between the regions C1 and C2 is large, either
the inequality of (4) or (5) is more likely to hold; i.e., we can
prune region S 2 or S 1. On the other hand, if the boundaries
between C1 and C2 are close to each other, we need to check
the objects within both S 1 and S 2 for a query around the
boundaries, even when the centers of C1 and C2 are far from
each other. This leads us to a pivot selection method based
on a large margin criterion.

To find pivots that divide the space into regions with a
large margin, we first make hierarchical clusters that recur-
sively divide the space into two regions. Currently, we use
OPTICS [5], which is a density-based clustering method. To
handle a large dataset, we use OPTICS on a randomly sam-
pled dataset. Then, for each division, we find a pivot that
separates the clusters with a large margin. Figure 1 depicts
an example of partitioning by MMMP.

Fig. 1 Partitioning by MMMP.

3.1 Overview of OPTICS

OPTICS constructs hierarchical clusters with arbitrary
shapes. It defines the reachability distance from the object
o1 to the object o2 as the longer distance of the k-nearest
neighbor distance of o1 and the distance between o1 and o2.
For a set D of objects, it first makes an ordered list q of
objects by performing the following steps:

1. randomly select an object o from D and prepare an or-
dered list q consisting of o,

2. repeat the following steps until D becomes empty:

a. choose an object p in D for which the reachability
distance from its nearest object in q is the shortest,

b. move p to the end of q.

As a result, objects in a same cluster tend to form a consec-
utive portion in the ordered list. Usually, a pair of adjacent
objects in the list with a large reachability distance belongs
to different clusters. OPTICS utilizes this feature to detect
the boundary between clusters, Fig. 2 shows an example of
the ordered list with the rechability distance on the vertical
axis. The peaks in the graph correspond to boundaries be-
tween clusters. See [5] for details.

When the center area of a cluster is denser than the
edge area, OPTICS tends to choose an edge object in the
cluster first, reach the center area with the shortest path, and
then move from the center area to the edge area. Therefore,
we can extract objects around the edge of a cluster in the
following way. For a cluster C detected by OPTICS, let qC

denote the sub ordered list corresponding to C. Suppose
Order(o,C) denotes the position of an object o ∈ C in qC .
We define the edge object set of C by

Edge(n,C) =
{
o
∣∣∣∣ Order(o,C) ≤ n

100
|C|
}

(6)

where n is a parameter. The edge object set represents the
set of the objects whose reachability distances are ranked
within the top n% in the cluster.

We chose OPTICS because

• it doesn’t require the number of clusters,

Fig. 2 Clustering by OPTICS.
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• it constructs hierarchical clusters,
• it can extract arbitrarily-shaped clusters without calcu-

lating the center object in each cluster, and
• it can extract objects around the edge of the cluster ef-

ficiently.

The most important reason for using Density-based
Clustering is to extract arbitrarily-shaped clusters while us-
ing the distances. Thus other schemes such as k-means and
BIRCH are not appropriate for MMMP.

The clustering cost is O(n2) in the original paper [5].
Although the clustering cost can be reduced somewhat [22],
it is still high. Therefore, we cluster random samples of the
data instead of whole data.

3.2 Pivot Selection and Partitioning

MMMP aims to achieve effective search pruning. We fo-
cus on the partitioning boundaries and the data distribution
patterns to achieve this requirement. We maximize the dis-
tances between the partitioning boundary and its closest ob-
jects, because the objects can be clearly classified. We di-
vide the space on the basis of the OPTICS’s clustering re-
sults because it effectively separates small dense regions.
Therefore, we try to find partitioning boundaries that are be-
tween pairs of clusters that are at maximum distances from
the cluster edges. However, we cannot directly detect the
partitioning boundaries in a metric space, because the par-
titioning boundaries are created by pivots. Thus, MMMP
basically searches for a pivot object that divides the clusters
obtained by OPTICS with the largest margin.

From the clustering results given by OPTICS, we con-
struct hierarchical clusters represented by a binary tree.
Hierarchical clusters are represented with a tree structure
whose nodes correspond to subspaces. Although a node can
have more than two children, many nodes have just two chil-
dren in the cluster hierarchy generated by OPTICS. There-
fore, we shall first describe the pivot selection method for
the node having two children. For a node v and an object p,
let Cp,Near (resp. Cp,Far) denote a v’s child cluster that is near
to (resp. far from) p. The cluster labels are judged on the
basis of the distance from p to one object selected randomly
from the objects in each cluster. Then, MMMP chooses the
following object as a pivot

pivot = argmax
p∈S

(
min

o f ∈Cp,Far

d(p, o f )

− max
on∈Cp,Near

d(p, on)
)
. (7)

The first term on the right side of this formula represents the
distance to the nearest object in Cp,Far, whereas the second
term is the distance to the farthest point in Cp,Near. There-
fore, the right side of Eq. (7) represents a kind of margin.

When a node has more than two children, MMMP
merges the children into two clusters and obtained a candi-
date pivot by Eq. (7). Then, it chooses the candidate having
the largest margin as a pivot.

Fig. 3 Pivot selection in the MMMP.

The reasons why only one object in each cluster is used
for distinguishing between Cp,Near and Cp,Far are as follows.
One reason is to reduce the computational cost for this op-
eration. The other reason is that the pivot candidates eval-
uated with the incorrect label clusters have no influence on
the pivot selection. These pivot candidates are not relevant
to the best pivot in most cases, and would finally be removed
at Eq. (7). Of course, when there is no relevant pivot candi-
date in the data, this distinction does not work well and the
evaluation of a pivot may have a minus value.

The partitioning distance rp of the pivot p is defined as

rp = Distance(p) =
1
2

(
min

o f ∈Cp,Far

d(p, o f )

+ max
on∈Cp,Near

d(p, on)
)
. (8)

Figure 3 is an overview of the pivot selection in
MMMP.

4. MMMP-Index

4.1 Index Structure

Our indexing scheme, named MMMP-Index, uses MMMP
and pivot filtering. As we described in Sect. 3, MMMP is
designed to prune regions irrelevant to the query in the clus-
tered data space. However, MMMP does not work well
when the number of clusters in the data space is too small
or the size of any one cluster is too large. The number of
objects managed by a pivot affects the performance of the
index. Therefore, we use the MMMP-Index to divide a large
cluster into small enough regions for improving the perfor-
mance by pivots as is done in LC [21]. Figure 4 shows the
structure of MMMP-Index.

The index is implemented with two B+-trees. One B+-
tree manages two kinds of pivots; the pivots selected by
MMMP and those chosen by compact partitioning. The piv-
ots form a tree structure. Each pivot has its own ID and
the IDs of its leaf pivots. Smaller IDs are assigned to ear-
lier selected pivots. The pivots’ keys on the B+-Tree are
also based on their IDs. The other B+-tree stores objects.
The object key is measured by d(o, p) + IDp × c, where p is
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Fig. 4 MMMP-index.

the pivot that manages the object and c is a parameter that
is sufficiently larger than the distance between objects. With
these key definitions, when we search for objects whose dis-
tances from the pivot are within a certain range, we can se-
quentially access the disk and can reduce the page access
cost.

In the implementation of MMMP-Index, we use
Edge(n,Cp,Far) (resp. Edge(n,Cp,Near)) defined by Eq. (6) in-
stead of Cp,Far (resp. Cp,Near) in Eqs. (7) and (8) for reducing
the computational cost of the pivot evaluation. Note that the
edge object set defined by Eq. (6) is a subset of its cluster.
When the parameter n in Eq. (6) is 100, the edge object set
is equivalent to the cluster. The rest of this section shows
the index construction method and the range search method
in the MMMP-Index.

4.2 Index Construction

4.2.1 Indexing

The MMMP-Index is constructed by performing the follow-
ing steps:

1. Randomly select k objects from the data.
2. Discover hierarchical clusters from the objects by using

OPTICS.
3. For each branch from the root of the cluster branches:

a. Find the edge objects of each cluster in the branch
whose reachability-distances are ranked within
the top n% in the cluster.

b. Select a pivot and its partitioning distance by us-
ing MMMP.

4. Create a tree structure with the pivot information.
5. For each object in the data, search for the region that

the object belongs to.
6. For each region, execute compact partitioning by [21].
7. Construct two B+-Trees to manage objects and pivots,

respectively.

4.2.2 Object Insertion

The MMMP-Index inserts an object by performing the fol-

lowing steps:

1. Search for the leaf region that the object belongs to in
the tree structure of the index.

2. Search for the pivot that the object belongs to in the
pivot list made by LC, and add the object [21].

4.2.3 Object Deletion

The MMMP-Index deletes an object by performing the fol-
lowing steps:

1. Search for an appropriate region for the object in the
tree structure of the index.

2. Search for an appropriate pivot in the pivot list of the
region, and delete the object [21].

4.3 Range Search

The MMMP-Index searches for objects whose distances to
a query object q are within the distance rq by performing the
following steps:

1. Traverse the tree structure of the index and discard ir-
relevant regions by using the distance from the MMMP
pivot to q and the triangle inequality (Eqs. (4) and (5)).

2. For each remaining region:

a. Discard irrelevant pivots from the pivot list by us-
ing the distance from the pivot to q and the triangle
inequality [21].

b. For each remaining pivot:

i. Extract the objects which may be relevant to
the range query from the B+-Tree by using
the distance from the pivot to q and the trian-
gle inequality.

ii. Measure the distance between each object
and q. If the distance is within rq, add the
object to the result set.

4.4 Index Construction Cost

The MMMP-Index is constructed by

(a) the hierarchical clustering,
(b) selecting a pivot for each partition of a cluster in the

hierarchy,
(c) and ball partitioning of the leaf clusters.

Step (a) requires from O(n log n) to O(n2) calculations by
using OPTICS [5]. Step (b) requires O(n2), and step (c)
requires from O(m log m) to O(m2), where m is the size of
the maximum leaf cluster [21]. Generally m is much less
than n, so steps (a) and (b) are the dominant parts of the in-
dexing construction. On the other hand, LC requires from
O(n log n) to O(n2) [21]. Hence, the computational com-
plexity for constructing the MMMP-Index is the same as
the worst case of LC. In our experiments, the indexing time
for MMMP-Index was almost the same as that for LC.



KURASAWA et al.: MARGIN-BASED PIVOT SELECTION FOR SIMILARITY SEARCH INDEXES
1427

Table 1 Data sets.
No. of No. of Standard No. of

Data Distance data queries Data source Dimension deviation range clusters

Vectors Euclid distance 100,000 1,000 synthetic (see Sect. 5.1) 2 (0,0.10) 20
8 Uniform -
8 (0,0.10) 10
8 (0,0.10) 20
8 (0,0.10) 30
8 (0,0.20) 20

16 (0,0.10) 20
30 (0,0.10) 20
8 (0,0.10) + noise 20

Julia Set Euclid distance 100,000 1,000 synthetic (see Sect. 5.1) 2 - -
Corel

Image Features Euclid distance 67,040 1,000 UCI KDD Archive 32 - -
Photo tag sets Jaccard’s coefficient 50,000 1,000 Flickr (query:“tokyo”) - - -
English words Edit distance 205,941 1,000 WordNet - - -

5. Performance Evaluation

5.1 Data Set

We used three types of data to evaluate our scheme: vectors,
sets, and strings. The datasets consisted of synthetic vectors
generated by us, vectors of a Julia set, the real vector dataset
named Corel Image Features, which were downloaded from
the UCI KDD Archive [23], photo tag sets which were re-
trieved with the queries “tokyo” from flickr [24], and En-
glish words, which were downloaded from WordNet [25].

We generated 2, 8, 16, and 30-dimensional uniform
and clustered vectors for the evaluation. The cluster cen-
ters of the clustered vectors were randomly selected. The
centers numbered 10, 20, and 30. The number of objects for
each cluster was randomly chosen. The objects in the cluster
were based on the normal distribution. The standard devia-
tions were randomly set from 0 to 0.10 and from 0 to 0.20.
Furthermore, we generated synthetic vectors with noise ob-
jects. We mixed the clustered vectors with uniform vectors
as noise. By referring to the previous study [21], we chose
the size of the data to be 100,000. Queries were randomly
chosen from the same distribution as the data set. When the
chosen query happened to be the same point in the data set,
we discarded it.

The Julia set is a fractal figure [26]. Let us consider a
sequence of complex numbers defined by the recurrent form
zn+1 = zn

2 + c where c is a complex constant. Then, the
quadric Julia set is the set of the initial complex numbers z0

in a sequence that does not diverge. We set c to be 0.40 −
0.35i. Figure 12 (a) shows its shape.

As for the Corel image collection, we used the Corel
Image Features [23] included in the collection as they were.
They consist of 32 subspaces that divide up the HSV color
space (32 colors: 8 ranges of H and 4 ranges of S). The
value of each dimension indicated the density of each color
in the entire image.

The photo tag set had 3,343 kinds of tags. The average
number of tags per photo was 7.42. All the photos had the
tag “tokyo”.

As for the English words, we used all entry words in-
cluded in the WordNet. We did not adjust the lengths of the
words and uses the strings as the they were.

Table 1 lists the details of the datasets.

5.2 Outline of Experiments

We conducted experiments to evaluate the MMMP-Index to-
gether with MMMP. We compared the MMMP-Index with
iDistance [3], D-Index [12], and LC [21].

As in the related work [1], the indexes’ performances
were evaluated in terms of the page access and computa-
tional costs. The page access cost of a region ri Pagecost(ri)
is estimated by

Pagecost(ri) = 
Nri/Pave�, (9)

where Nri is the number of accessed objects in ri, and Pave

is the average number of objects stored in a page. The page
access cost of a query q is the sum of the costs of the ac-
cessed regions. On the other hand, we measured the com-
putational cost by the total number of distance calculations
during the search. Actually, the computational time depends
not only on the number of distance calculations but also on
the cost of each calculation. In addition, we show the search
time of some data sets for reference, although the time de-
pends on the machine resource. We conducted the experi-
ment on a Linux PC equipped with an Intel(R) Quad Core
Xeon(TM) X5492 3.40 GHz CPU and 64 GB Memory. We
implemented the MMMP-Index in C and compiled it with
GCC 4.2.

The performance of a similarity search index depends
on the distribution of the data. Thus, this experiment used
datasets containing various objects described in Sect. 5.1.
According to the previous studies [3], the page size needed
for estimating the page access cost is 4,096 bytes. Since the
computational cost of iDistance to find the cluster centers
in the data uses the computationally heavy edit distance or
Jaccard’s Coefficient, we didn’t measure the performance of
iDistance. Each result was the average over 1,000 queries of
its dataset.
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5.3 Effect of Sample Size

We first evaluated how the sample size of MMMP affects
the index performance using four kinds of datasets, i.e.,

• synthetic vector datasets in an 8-dimensional space
with 20 clusters of vectors with standard deviations of

(a) Computational Cost (b) Page Access Cost

Fig. 5 Samples for clustering.

(a) Computational Cost (b) Page Access Cost

Fig. 6 Search cost w.r.t. no. of objects.

(a) Search Time (b) Computational Cost (c) Page Access Cost

Fig. 7 Search cost w.r.t. variance (8-d, 20 clusters and uniform).

(a) Search Time (b) Computational Cost (c) Page Access Cost

Fig. 8 Search cost w.r.t. noise (8-d, 20 clusters, σ:(0,0.20)).

from 0 to 0.1 and from 0 to 0.2,
• real vectors, and
• the tag set.

We constructed indexes using 500 to 50,000 samples. The
radius of a query in the experiment was set to the distance
to the 20-nearest neighbor objects. The edge objects of each
cluster were the objects whose reachability-distances were
ranked within the top 5% in the cluster. Figure 5 plots the
computational and page access costs with respect to sample
size. The result indicates that the index performances are
not so much affected by the number of samples. Presum-
ably, this is because the vector data has clear clusters. We
decided that the clustering in MMMP would be computed
using 20,000 random samples from the dataset for the index
performance evaluations.

5.4 Synthetic Data

We compared the MMMP-Index with other indexes using
synthetic data generated with a wide range of parameters.
Figures 6, 7, 8, and 9 show the index performance evalua-
tion results of the synthetic vectors. The radius of a query
in the experiment was set to the distance to the 20-nearest
neighbor objects. The numbers of objects were fixed to
100,000 in Figs. 7, 8, and 9 whereas the number varied from
10,000 to 200,000 in Fig. 6. We used various variances, the
dimensions, numbers of clusters, and the number of objects,
as shown in Table 1. It is clear that the MMMP-Index is
superior to the other schemes for indexing clustered data.
For example, Fig. 7 for 8-dimensional vectors shows that
the computational cost of the MMMP-Index is less than two
thirds that of the other schemes. The page access cost of the
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(a) Search Time (b) Computational Cost (c) Page Access Cost

Fig. 9 Search cost w.r.t. dimension (20 clusters, σ:(0,0.20)).

(a) 8-d, 20 clusters, σ:(0,0.10) (b) 8-d, 20 clusters, σ:(0,0.20)

Fig. 10 Clustering result.

MMMP-Index is also less than the other schemes. These
results prove that MMMP is useful for clustered vectors.
MMMP achieves effective partitioning by exploiting knowl-
edge about the distribution of the clustered data. The results
in Fig. 6 indicate that the computational cost of the MMMP-
Index for the clustered data with 20 clusters is almost half
that of the data with 10 clusters.

Moreover, the results in Fig. 7 indicate the search cost
of the MMMP-Index is lower for the clustered data with
lower standard deviations. Figure 10 depicts the results of
OPTICS clustering. Deeper valleys in the reachability plots
mean denser clusters. Higher reachability distance points
between valleys mean that clusters are far from each other.
From the clustering results, we can clearly recognize that the
clustered data with lower standard deviations in Fig. 10 (a)
has 18 clusters that is almost same the number of clusters as
its parameter. We can also see that the clusters in the data
with lower standard deviations are denser and more isolated
than the other data. It is more difficult to recognize clusters
when the data have higher standard deviations. Thus, we
think the difference is because the data with lower standard
deviations has a sparser density space and MMMP could
easily create a good partitioning boundary.

We also examined the index performance when the
dataset included noise objects. Figure 8 shows the results. It
is clear that MMMP-Index outperforms the compared meth-
ods for wide range of noise ratios. These results indicate that
the clustering technique of MMMP is stable against noise.

To evaluate the effectiveness of MMMP separately, we
counted the number of accessed regions during query pro-
cessing. Figure 11 shows the number of the accessed re-
gions while searching for the 8-dimension clustered vector.
We compared MMMP with D-Index [12] and iDistance [3].
D-Index selects a pivot based on the mean distances between

Fig. 11 Partitioning performance (8-d, 20 clusters, σ:(0,0.10)).

the pivot and objects, and recursively divides the space by
using Excluded Middle Partitioning. iDistance divides the
space with a Voronoi partition based on k-means clustering
and sets the cluster centers as the pivots. The vertical axes
represent the number of accessed regions. The horizontal
axis is the query ranges. The number for each line in the
legend represents the parameter for indexing. The numbers
for MMMP and iDistance are the numbers of clusters, and
the numbers for the D-Index are the partitioning distances
of the exclusion sets. The results show that the MMMP
minimizes the number of accessed regions while searching.
Their number was approximately one from the MMMP re-
sults. This result indicates that the partitioning based on the
cluster edges is better than partitioning based on cluster cen-
ters as in iDistance.

Figure 6 shows the index performance with respect to
the number of objects. As in the related work [27], the com-
putational cost was evaluated by the percentage of objects
examined. The vertical axis of (a) represents the percent-
age of objects examined within certain distances from the
pivots. The vertical axis of (b) is the page cost. The hori-
zontal axis is the number of objects. From these results, we
can see that the search cost of the MMMP-Index is lower
for datasets with more clusters, although its cost scales up
almost linearly as the size of dataset increases. We inter-
pret this behavior as follows: the MMMP-Index correctly
accesses the only region which is relevant to the query (as
shown in Figs. 10 and 11); however, the cost of checking the
objects in the region varies almost linearly because the ob-
jects are indexed by LC. For much larger datasets, we will
have to use a more efficient indexing scheme.

The above synthetic vectors have ball-shaped clusters,
as they are generated on the basis of a normal distribution.
Ball-shaped clusters are easy to classify by pivot partition-
ing because a pivot makes a spherical boundary. Thus, for



1430
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.6 JUNE 2010

evaluating the index performance for clusters whose shape
is not spherical, we compared the MMMP-Index with other
indexes by using the Julia set. We selected it because it has
hierarchical clusters of various sizes that are not ball-shaped
and it can be easily generated. Figure 12 shows the index
performances of these methods on the Julia set. It is clear
that the MMMP-Index is better than the other methods. Al-
though iDistance sets the cluster centers as pivots, MMMP
can select a pivot from all the objects on the basis of its
partitioning boundary and render a good partition for search

(a) Data (b) Search Time (c) Computational Cost (d) Page Access Cost

Fig. 12 Julia set.

(a) Search Time (b) Computational Cost (c) Page Access Cost

Fig. 13 Corel image features.

(a) Search Time (b) Computational Cost (c) Page Access Cost

Fig. 14 Photo tag sets, query: “tokyo”.

(a) Search Time (b) Computational Cost (c) Page Access Cost

Fig. 15 English words.

pruning regardless of the clusters’ shapes.

5.5 Real Data

We compared the MMMP-Index with other methods on
three real data sets. The datasets have different distance
functions. In this experiment, we compared the index per-
formance with respect to the query radius. We set the
radiuses to the distances to 5-nearest through 100-nearest
neighbors. Figures 13, 14, and 15 show the index per-
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formance for the Corel image features, the photo set, and
the English words, respectively. MMMP-Index outperforms
other methods for the Corel image features and the photo tag
sets (Figs. 13 and 14). This proves that MMMP-Index is not
only effective for synthetic vectors but also the data whose
distances obey metric space postulates.

The MMMP-Index and LC perform about the same
for English words, because the datasets have few clusters.
This means that the MMMP does not work well on them.
Since MMMP requires enough clusters for selecting pivots,
it would select few pivots for pivot partitioning and the index
would mainly depend on pivot filtering in those datasets.

6. Conclusion

We developed MMMP as a means of pivot partitioning for
the purpose of pruning in a similarity search index. MMMP
divides data on the basis of the shapes of clusters extracted
by using OPTICS. During partitioning, MMMP searches for
an object to be the best pivot whose partitioning boundary
is between clusters and maximizes the distances from the
cluster edges. We also created an index, named the MMMP-
Index. MMMP is most effective when the indexed data is
clustered.

We think that MMMP has three problems. One prob-
lem is the pivot selection cost. The current MMMP reduces
the relevance evaluation of an object p to the pivot by using
edge objects of the clusters. However, the pivot candidate
is not filtered from the data. We should improve the pivot
selection. Another problem is the performance for a few
clusters worth of data and for high dimensional data. The
distances between objects in such data are not various. The
MMMP cannot extract clusters or margins between clusters
from them, and don’t work well. The other problem is the
pivot refinement. It is hard to refine the pivots generated by
the MMMP after the index has been constructed. We should
make the MMMP-Index adapt to not only a static data but
also changing data. We are currently working on improving
the indexing schemes to resolve these problems.
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