International Symposium on Applications and the Internet

Huffman-DHT: Index Structure Refinement Scheme
for P2P Information Retrieval

Hisashi Kurasawa
The University of Tokyo
2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo, JAPAN
kurasawa@nii.ac.jp

Abstract

Peer-to-Peer Information Retrieval (P2P IR) systems us-
ing a distributed index on a distributed hash table (DHT)
can make highly precise searches for documents relevant
to a query. However, these systems require a heavy index
construction cost, and cause unfair index management costs
due to the unbalanced term frequency distribution. We pro-
pose a new node access scheme for P2P IR that we call
Huffman-DHT. Huffman-DHT uses an algorithm similar to
Huffman coding, and modifies the DHT structure based on
the term distribution. Huffman-DHT distributes the index
construction cost among the nodes equally, and achieves
load balancing.

1. Introduction

Information management and retrieval has become a
very important part of the rapid increase in digitized and
easily accessible information. They are studied from vari-
ous aspects such as their information processing efficiency
in the database research field and their information retrieval
(IR) effectiveness in the IR research field. Most of the de-
veloped techniques are mainly based on centralized sys-
tems. Researchers have recently found peer-to-peer (P2P)
network systems attractive as an architecture for informa-
tion management and retrieval. An information retrieval
system on a P2P network (P2P IR) has advantages in their
cost, scalability, and dependability. Furthermore, they are
suitable for developing and maintaining a system on a large
amount of distributed computation resources that are dy-
namically reconfigured.

Modern IR methods use the occurrence of terms infor-
mation in document collection, such as the term frequency
(TF) that denotes the number of term occurrences in a doc-
ument and the document frequency (DF) that denotes the
number of documents including the term, to measure the

Atsuhiro Takasu Jun Adachi
National Institute of Informatics
2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo, JAPAN
{takasu,adachi} @nii.ac.jp

relevance between queries and documents [5]. Although
the term information can be easily calculated in centralized
systems, it is difficult problem in P2P systems. Early P2P
systems [2] flooded queries over P2P networks and gath-
ered documents that contained the query terms. They did
not fully use the term information, and therefore, the gath-
ered documents contained less relevant documents. They
also caused heavy network traffic loads. Recently, several
distributed indexing methods for P2P IR systems have been
proposed [11,9, 20, 15]. The indices maintain various infor-
mation that is useful in IR, including the term information.
We can improve the information retrieval effectiveness as
well as the query processing efficiency by using these in-
dices.

The problem with the distributed indices is their con-
struction cost. The information of each term is usually
maintained by a specific node. When processing a query
or inserting a new document into a P2P IR system, we need
to access the nodes that keep the term information in the
queries or documents, respectively. For this purpose, a dis-
tributed hash table (DHT) is often used. It enables us to
access the objective node in O(logn) hops for the number
n of nodes in the P2P network. When registering a doc-
ument into the index, we need to access all the nodes that
keep the term information included in the document. There-
fore, the construction and maintenance of the index causes
heavy traffic.

To balance the index construction cost, we propose a
new node access scheme. It is empirically known that term
occurrence probability obeys an exponential distribution,
that is, a small number of terms appear frequently whereas
many other terms appear with lower probability in docu-
ments. However, current distributed indexing methods ac-
cess nodes responsible to terms in O(log n) hops, indepen-
dent of the term probability. Our method finds a node with
less hops for more frequently appearing terms. To achieve
this, we modify the node access scheme of the DHT using
the coding theory technique. The proposed method uses an
algorithm similar to Huffman coding, and we call the resul-

978-0-7695-3297-4/08 $25.00 © 2008 IEEE

DOI 10.1109/SAINT.2008.26

111

IEEE
@ computer
socle

Authorized licensed use limited to: UNIVERSITY OF TOKYO. Downloaded on April 30,2010 at 02:51:27 UTC from IEEE Xplore. Restrictions apply.

ty

tant scheme Huffman-DHT. We show through simulations
that the proposed method reduces the average number of
hops for a distributed index access, and consequently, bal-
ances the traffic load for an index construction.

The rest of this paper is composed as follows. We briefly
survey P2P IR systems in Section 2, and overview the in-
dexing schemes for P2P IR systems in Section 3. In Section
4, we introduce a new peer searching method that reduces
the network traffic load as well as balances the load of peers.
Section 5 presents our experimental results. Finally, Section
6 concludes this paper and addresses some future research
directions.

2. Related Work

We start with an overview of the related works using
a global index in P2P IR. In P2P IR systems using un-
structured P2P networks, a node floods a global index with
a gossip algorithm and shares information concerning the
peers’ document collections [11]. On the other hand, in
P2P IR systems using structured P2P networks, a node
makes a global index using a distributed hash table (DHT)
[9, 20, 15]. Every node maintains a part of the global index
related to the responsible terms on the DHT. Two types of
global indices have already been proposed. One is a term-
to-peer index where the terms are indexed by peer [9]. Each
node publishes a document collection summary and sends
the summary to the nodes responsible for the terms included
in the summary on the DHT. As a result, every node main-
tains a peer list for the responsible terms. Many peer selec-
tion strategies have been proposed for more efficient search-
ing, such as CORI [10], an overlap awareness strategy [8],
a global document frequency estimation [7], and term co-
occurrences [0, 16]. The other is a term-to-document index
where the terms are indexed by document [20, 15]. Every
node maintains a document list for the responsible terms on
the DHT instead of a peer list. Although making a term-to-
document index costs more due to the amount of document
insertion when compared to a term-to-peer index, the term-
to-document index can directly refer to the term frequency
of a specific document.

From the aspect of load balancing, unstructured P2P IR
systems are better than structured P2P IR systems, because
the nodes in structured P2P IR systems maintain not only
their document collection, but also indices of their respon-
sible terms. In structured P2P, the term indices are assigned
to nodes using the hash function. The nodes assigned to
the indices of frequent terms tend to have heavier loads, be-
cause they are frequently accessed in document registration
to the index. Many techniques have been proposed for bal-
ancing these loads, such as the virtual server [19], the local
and random probes algorithms [14], pair-wise interactions
of peers[4], and proximity-aware balancing [21]. These

112

*Each node is responsible for
terms based on hash table

Node A Hash {bird}

| Create structured index using DHT \

00 e i >
Ike biras.
| wish for a bird.

o,

Term Weight
1. bird 50
2. wish 43
3. like 32
4. ..

filename |term weight | data location

Doc 1 50
Doc 3 48
Doc 7 21
Node B Hash {like
Doc 1 32
Doc 4 12
Doc 8 63

Hash_x
Hash_y
Hash_z

Hash_x

Hash_v

Hash_w

Figure 1. Indexing Scheme in P2P IR

techniques can improve the node ID assignment in DHT
and can be used in any P2P applications. However, they
require extra traffic load to suitably modify the IDs.

The search efficiency depends on the quality of the
global index. Although structured P2P IR systems require
more cost to register a document to the index than unstruc-
tured systems, they can retrieve relevant documents with
higher precision. In particular, the systems using a term-
to-document index have a better search performance. A
query-driven index is proposed for ensuring a lower cost
for indexing documents in a structured P2P system [18]. In
this type of approach, the IR system makes indices for only
those terms that have occurred in queries and reduces the
number of unused index entries. However, the terms that are
not indexed must be searched via a broadcast, and because
of this, the search efficiency of the query-driven index is in-
ferior to the one in systems using a term-to-document index
that has the information of all the terms in the documents.
An ideal P2P IR system can make a highly-precise search
for documents, and constructs an index at a lower cost. To
achieve this goal, we used a term-to-document index and
refined the DHT structure to overcome the inefficient index
construction drawback.

3. Background

3.1 Indexing and Data Allocation Scheme
in P2P IR Systems

In this section we explain the term-to-document indexing
scheme in P2P IR systems using structured P2P networks.

In the P2P IR systems, a node creates a global index on
the DHT. The global index consists of inverted indices for
each term. An inverted index for a term is held by the appro-
priate node, whose hash value is similar to the hash value of
the term. The inverted index maintains three values for a
document, the file name, the term weight in the document,
and a pointer for the data of the document. A node registers

Authorized licensed use limited to: UNIVERSITY OF TOKYO. Downloaded on April 30,2010 at 02:51:27 UTC from IEEE Xplore. Restrictions apply.

the document information in the indices that are related to
each term in the document.

The term weight in the indices is usually measured using
the term and document frequencies. For example, Concor-
dia [15] adopted the Probabilistic Model and uses the term
weighting formula presented by [12], which is a variation
of BM25 [17]. For a term ¢ in a document d, the weight of
t for d is defined as:

N (k+1)-tf

w(t,d) = log — - ,
df kK(Ql-a)+a 2} +tf

ey

where k and « are the parameters, NV is the number of doc-
uments in the collection, ¢ f is the occurrence frequency of
tin d, df is the number of documents containing ¢, dl is the
length of d, and avdl is the average document length. The
relevance score of query @ is defined as:

R(Q,d) =) w(t,d).

teQ

@

In an autonomous and distributed environment like P2P, it
is difficult to determine IV, avdl, and df, because the doc-
uments are allocated throughout the network. Many P2P
IR systems decided to adopt a method that uses of a global
index on the DHT to calculate the df. Nodes can get the
number of documents containing the term, that is df, by re-
ferring to the index by O(logn) hops.

When given a query consisting of a set of terms, the sys-
tem connects directly to the nodes responsible for each term
in the query and refers to each index in the nodes. The sys-
tem calculates the precision of each document to the query,
and gathers the relevant documents with high precision val-
ues from the network. Figure 1 shows the indexing and re-
trieving scheme in the P2P IR systems.

3.2 Indexing Cost

We compare a term-to-peer index [9] and a term-to-
document index [20, 15] from the point of the indexing cost.
In P2P IR methods using a term-to-peer index, terms are
indexed by a peer’s collection. In the term-to-peer index,
an index cannot distinguish between the documents in the
same peer’s collection. On the other hand, in P2P IR meth-
ods using a term-to-document index, the terms are indexed
by document. That is, an index can recognize the differ-
ence between the documents in the same peer’s collection.
However, the indexing cost of the term-to-document index
is heavier than the methods using a term-to-peer index.

Let us first consider the cost 77 of a node in P2P IR meth-
ods using a term-to-peer index registering a collection Cl;
of terms into the index. Suppose f(¢) denotes the cost re-
quired for calculating the weight of ¢. Then, T} is given

113

as:

Ti= Y f(t)

teCan

Let N,;; denote the number of terms in the collection. Then,
the number of registrations to the indices in [9] is repre-
sented as:

Nay-

On the other hand, the cost of 75 that a node in P2P IR
methods using a term-to-peer index needs to register each
document for every term in its collection to the nodes re-
sponsible for the term on a DHT is represented as:

Naoc
T2 = Z Z f(t))
i=1 \teCp,

where C'p, denotes the set of terms in a document D; and
Ny denotes the number of documents in the collection.
Then, the number of registrations to the indices in the P2P
IR methods is represented as:

Naoe

Z ND,;
i=1

where Np, is the number of terms in Cp, .

4. Huffman-DHT
4.1. Huffman Coding

In Huffman-DHT, an ID is assigned to each node. In this
paper, we denote the ID by a bit vector b1bs - - - b;, where
b; (1 <4i<1l)isa0or 1. For nodes p and ¢, the distance
between p and ¢ is defined as |id(p) — id(q)| where id(-)
denotes the ID of a node. Each node has a list of addresses
of the other nodes in the same way as in an ordinary DHT.

In Huffman-DHT, we construct a coding tree for frequent
terms. We need to know the probability distribution of terms
when coding. We use the document frequency distribution
for coding, because the document frequency of a term de-
notes the number of accesses to the node responsible to the
term when registering documents. We estimate the distribu-
tion from a sample document set S. Let df (¢, S) denote the
document frequency of a term ¢ in the sample document set
S. Then, we select the top k terms in the descending order
of df (¢, S) as frequent terms, where k is a parameter of the
Huffman-DHT. The remaining terms are assigned to nodes
in the same way as in the distributed index [9, 15]. For a
term ¢ in the frequent terms 7', we estimate its probability
by using
df(t, S)

P = s)

Authorized licensed use limited to: UNIVERSITY OF TOKYO. Downloaded on April 30,2010 at 02:51:27 UTC from IEEE Xplore. Restrictions apply.

Then, we construct the coding tree using the Huffman cod-
ing algorithm[13]. Figure 2 shows an example of a coding
tree. As shown in the figure, we use the binary alphabet for
coding.

The reasons why we encode only the frequent terms are:

e we can reduce the size of the coding tree that must be
shared by all nodes,

o the coding is effective for frequent terms, and

e we can estimate the distribution from a small sample
of documents.

4.2. Node Assignment

For a frequent term ¢, let ¢ - - - ¢, be its code. If the code
length m is longer than the bit vector length [of the node
IDs, then the code is truncated to a [bit, and the term is
assigned to a node whose ID is closest to the truncated code
c1---¢;. Otherwise, a term is assigned to a set of nodes
whose ID is between ¢; ---¢,,0---0and ¢ ---¢p1--- 1.

We refer to this node set as aIll encoded node clustler for ¢.
Note that a more frequent term is encoded to a shorter code
by Huffman coding, and therefore, it is assigned to a larger
encoded node cluster. Figure 3 shows the assignment of the
frequent terms and the node assignment in Figure 2.

4.3. Node Search

In Huffman-DHT, all the nodes in a P2P system have a
list of the frequent terms and the coding tree described in
Section 4.1. Suppose a node referred to as a query node
searches for a responsible node for a term ¢.

If term ¢ is a frequent term, the query node encodes t.
Otherwise, the node finds term ¢’ in a list of the frequent
terms whose hash number is nearest that of term ¢, and as-
sign t as the code of ¢’. The query node recursively performs
the following steps:

1. If the query node knows the address of a node in the
encoded node cluster for ¢, return the address.

2. Otherwise, send the query to the node in the address
list whose ID is the closest to one in the encoded node
cluster.

We can find a responsible node with less hops, because
the encoded node cluster is large for a frequent term.

4.4. Document Registration

In Huffman-DHT, a document is registered into the index
through the following steps:

114

documents Calculate document frequency

and extract frequent terms

| Create Huffman-DHT based on DF |

Huffman-DHT ID

=)
=

term

000000
000001
00001
0001
001
010
on
1

term a

term b

term c

term d

term e

term f
term g
term h

o|o|ofw|N|=|=

®

Figure 2. DHT structure refinement process
in Huffman-DHT

Manage Index {a,b,c,d)

Manage and
| synchronize Index {h}

Figure 3. Huffman-DHT ID decision process
and node assignment process

1. For each term ¢ in the document:

(a) Search for a responsible node using the proce-
dure described in section 4.3,

(b) make the responsible node modify the entry of
the term ¢ so that it contains the document infor-
mation.

Since the node search procedure returns an address of a
node in the encoded node cluster, the index update done by
the above procedure must be propagated to the other nodes
in the same encoded node cluster. This synchronization pro-
cedure can be efficiently done because the nodes in the clus-
ter have consecutive IDs and can access each other directly
with high probability.

5. Experimental Results

The Huffman-DHT aims at assigning statistically bal-
anced IDs to terms that have a specific probability distribu-
tion. We conducted four simulation experiments to evalu-
ate the Huffman-DHT. The evaluations were performed on
the Tipster 3 collection that was used at TREC [1]. The
collection consists of 336,310 articles from the San Jose
Mercury News (1991), the Associated Press (1990), U.S.
Patents (1983-1991), and Information from the Computer

Authorized licensed use limited to: UNIVERSITY OF TOKYO. Downloaded on April 30,2010 at 02:51:27 UTC from IEEE Xplore. Restrictions apply.

1e+06 . - - - -
I Tipster 3]
100000

10000

1000 4

Document frequency

100 L\

-

0 200000 400000 600000

Term ID

800000

Figure 4. Document Frequency Distribution
1 — ——

09 ¢

0.8 }

0.7 } /

0.6 | Vi

0.5}

04 | /

03¢

0.2

Ratio of sum of document frequency

0.4t

[y I———— -

1e-06 1e-05 0.1

iy

00001 "0..-0-01.‘ 001]
Ratio of no. of Term IDs
Figure 5. Ratio of Frequent Term Occur-

rences

Select disks (1991, 1992) copyrighted by Ziff-Davis. We
removed the stopwords and converted the remaining words
to stems using the Porter stemmer [3].

5.1 Estimation of DF Distribution

First, we examined the document frequency distribution.
Figure 4 shows the distribution of the Tipster 3 collection.
The collection contains 817,897 terms, and there are a to-
tal number of 53,445,728 term frequencies. Figure 5 shows
the document frequencies of terms. The terms are sorted by
document frequency and assigned IDs by the hash function.
The sum of the document frequencies of the top 4,580 fre-
quent terms (0.56% terms in the collection) occupies about
80% of the total number of document frequencies. There-
fore, by balancing the index construction cost for this small
amount of frequent terms, we can distribute the total index
construction cost among the nodes equally.

Second, we conducted an experiment on the estima-

115

Tipster 3 d

Kullback-Leibler divergence

05 | o

oL L L 1 1 L L 1 L J
0 2000 4000 6000 8000 10000 12000 14000 16000 18000

Samp\e document size
Figure 6. Similarity between Estimation and
Actual Distribution

tion of the document frequency distribution over the terms.
In Huffman-DHT, we need to estimate the document fre-
quency distribution and extract frequent terms from a small
number of samples from the document collection. We com-
pared the document frequencies distribution estimated from
randomly selected sample documents to the distribution es-
timated from the whole Tipster 3 collection. Figure 6 shows
the Kullback-Leibler divergence between the two distribu-
tions with respect to the number of sample documents. To
handle the terms whose document frequency was zero in
the sampled documents, we smoothed over the distributions
estimated from the sample documents using the Laplace
smoothing technique. As shown in the graph, the diver-
gence converges at a small number of sample documents.
Therefore, the DF distribution of frequent terms can be es-
timated from a small document collection. This result in-
dicates that we do not need to frequently update Huffman-
DHT.

5.2 Hops Required for Indexing docu-
ments

We simulated the number of hops required for indexing
documents in Huffman-DHT. In this experiment we used
the top 4,580 most frequent terms in the Tipster 3 collection
to create a Huffman-DHT. These terms occupied 80% of the
total document frequencies of all the terms. The depth of the
resultant Huffman-DHT tree ranges from 8 to 15. Figure
7 shows the number of hops for indexing documents with
respect to the number of nodes in P2P IR systems.

The blue line is the baseline denoting the required hops
by a P2P IR system using an ordinary DHT, regardless of
the term distribution.

The red line shows the upper bound of required hops cal-

Authorized licensed use limited to: UNIVERSITY OF TOKYO. Downloaded on April 30,2010 at 02:51:27 UTC from IEEE Xplore. Restrictions apply.

culated by

> df(t, D) x logn,

teT
where T', D, and n denote the number of terms, document
collection, and the number of nodes, respectively. This for-
mula is obtained by assuming that we registered each doc-
ument in the collection one by one to index them and we
used log n hops to search for the node responsible for each
term in a document.

The other lines show the required number of hops by
the proposed P2P IR system using the Huffman-DHT. All
the lines, except the green one, include the number of hops
necessary for synchronization.

As shown in the graph, an ordinary DHT (blue line) re-
quires less hops than the upper bound (red line) because we
can find the node for a term with less hops if the node is near
the registering node. However, this is proportional to the up-
per bound. On the other hand, the proposed Huffman-DHT
successfully reduced the required number of hops for in-
dexing documents if the nodes sent the list of synchroniza-
tion messages. The extra hops for synchronization within
the same encoded node cluster for Huffman-DHT were re-
quired, but it reduced the number of hops necessary for
searching for the responsible node for a term, It should be
noted that Huffman-DHT is effective for large P2P systems
that consist of more than 1,000 nodes. The Huffman-DHT
is more scalable than an ordinary DHT.

5.3 Load Balancing

In ordinary DHT, the nodes responsible for frequent
terms are accessed frequently for document registration. So,
these nodes become “hot spots”. On the other hand, in
Huffman-DHT, the number of nodes responsible for a term
is decided according to its document frequency. Therefore,
the document registration cost is shared among the nodes.

We conducted an experiment to evaluate the load bal-
ancing. In this experiment, we measured the number of
accesses to each node to register a document collection in
both an ordinary DHT and the Huffman-DHT. Let a(p) de-
note the number of accesses at a node p. Then, we used
the following ratio of the maximum to minimum numbers
of access as the metric of the load concentration:

max,e N a(p)

min,ey a(p)’
where NV is a set of nodes in the network. Figure 8 shows
the load concentration with respect to the number of nodes,
where the red line represents the load concentration for an
ordinary DHT and the other lines represent that for the
Huffman-DHT, respectively. As shown in the graph, the
Huffman-DHT is more effective, even if synchronization

messages are needed when a P2P system consists of more
than 100 nodes.

116

1.2e409 — T m
Nt*log2(Nn)
baseline

i 10409 | 10

9 Huffman-DHT upds

'g’ Hufiman-DHT upds /er istiations

£ Be+08 | Huffman-DHT update every 5 registrations

[} Hutiman-DHT update every 1registration

:E e

& 6es08 | A it

S sE 3

B e

5 s

8 4e+08 | Vg

2 !

2 7

*® 20408 | >

100 1000 10000 100000 1e+06 1e+07
nodes

1 10

Figure 7. No. of Hops for Indexing Docs

g 10408 ; ; ; ; ; ;

0 Baseline

i Huffman-DHT no update — — —

§ 100000 - Huffman-DHT update every 20 Zccesses i

5 Huffman-DHT update every 1@ accesses

8 Hufiman-DHT update every'5 accesses

E 10000 - Huffman-DHT update s}fery 1access —--- |

2 7

g 1000 ‘/

¢ L / H

8

& /

'i 100 // R = J
4

| =4

=5 s

E 10 //," Pl 4

5 e

£ _____,,,,44“'3

o -— —

£ 1 — L L L L L

100 1000 10000 100000 1e+06 1e+07

nodes

Figure 8. Load Balancing

5.4 Synchronization

In the Huffman-DHT, a node needs to propagate the up-
date of the index to other nodes in the same encoded node
cluster. We simulated the cluster size in the Huffman-DHT.
Figure 9 shows the maximum size of the clusters in the
Huffman-DHT with respect to the number of nodes in the
system. We can see from the results that at most 500 nodes
need to share the index updates when the P2P system con-
sists of 100,000 nodes.

6. Conclusions

This paper proposed the Huffman-DHT, which improves
the load balancing and reduces the distributed index con-
struction cost for P2P IR systems. The Huffman-DHT as-
signs the index of a more frequently appearing term to a
larger set of nodes by using the Huffman coding algorithm.
We proved through simulations that the Huffman-DHT re-
duces the index construction cost, when compared to the

Authorized licensed use limited to: UNIVERSITY OF TOKYO. Downloaded on April 30,2010 at 02:51:27 UTC from IEEE Xplore. Restrictions apply.

4500 — SN D —
I Huffman-DHT 1
4000 |
|
% 3500 | |
o |
e |
w 3000 | |
L, |
° |
5 2500 | |
£=]
[&} |
= 2000 | /
2 1500
g |
ﬁ |
£ 1000 |
500 | /r
oL " L e s g oy
1 10 100 1000 10000 100000 1e+06 1e+07
nodes

Figure 9. Maximum Node Cluster Size

construction cost of an ordinary DHT. It is most effective
when the P2P system consists of about 100,000 nodes and
contains many documents. In Huffman-DHT, we need to
know the probability distribution of the term occurrence and
share the distribution among all the nodes in the probabil-
ity. We proved that we can estimate the probability distri-
bution from a small number of sample documents and this
is sufficient enough to share the probabilities for a small
set of frequently appearing terms. The Huffman-DHT was
constructed according to the probability distribution of the
terms in the documents. The probability distribution of the
query terms may be different from the distribution of the
terms in the documents. We need to evaluate the effect of
the probability distribution discrepancies on the query pro-
cessing efficiency. We plan to conduct experiments on this
issue in the future.

References

(1]
(2]
(3]
(4]

Text REtrieval Conference (TREC), http://trec.nist.gov/.
Gnutella, http://www.gnutella.com/.

K. Aberer, P. Cudre-Mauroux, A. Datta, Z. Despotovic,
M. Hauswirth, M. Punceva, and R. Schmidt. P-Grid: A Self-
organizing Structured P2P System. SIGMOD Record, 2003.
R. Baeza-Yates and B. Ribeiro-Neto. Modern Information
Retrieval. ACM Press, 1999.

M. Bender, S. Michel, and P. Triantafillou. P2P Content
Search: Give the Web Back to the People. In Proceedings
of the 5th International Workshop on Peer-to-Peer Systems
(IPTPS’06), 2006.

M. Bender, S. Michel, P. Triantafillou, and G. Weikum.
Global Document Frequency Estimation in Peer-to-Peer
Web Search. In Proceedings of 9th International Workshop
on the Web and Databases (WebDB’06), 2006.

M. Bender, S. Michel, P. Triantafillou, G. Weikum, and
C. Zimmer. Improving Collection Selection with Over-
lap Awareness in P2P Search Engines. In Proceedings of

(3]
(6]

(7]

(8]

Porter stemmer, http://www.tartarus.org/martin/PorterStemmer/.

117

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

the 28th annual international ACM SIGIR conference on
Research and development in information retrieval (SIGIR
’05), pages 6774, 2005.

M. Bender, S. Michel, P. Triantafillon, G. Weikum, and
C. Zimmer. MINERVA: Collaborative P2P Search. In Pro-
ceedings of the 31st International Conference on Very Large
Data Bases (VLDB ’05), 2005.

J. Callan. Distributed Information Retrieval. Advances in
Information Retrieval, Kluwer Academic Publishers, pages
127-150, 2000.

F. M. Cuenca-Acuna, C. Peery, R. P. Martin, and T. D.
Nguyen. PlanetP: Using Gossiping to Build Content Ad-
dressable Peer-to-Peer Information Sharing Communities.
In Proceedings of the 12th International Symposium on High
Performance Distributed Computing (HPDC ’03), 2003.

H. Fang, T. Tao, and C. Zhai. A Formal Study of Information
Retrieval Heuristics. In Proceedings of the 27th annual in-
ternational ACM SIGIR conference on Research and devel-
opment in information retrieval (SIGIR ’04), pages 49-56,
2004.

D. A. Huffman. @A Method for the Construction of
Minimum-Redundancy Codes. In Proceedings of the Insti-
tute of Radio Enginners (IRE), pages 1098—-1101, 1952.

K. Kenthapadi and G. S. Manku. Decentralized Algorithms
using both Local and Random Probes for P2P Load Bal-
ancing. In Proceedings of the seventeenth annual ACM
symposium on Parallelism in algorithms and architectures

(SPAA’05), 2005.
H. Kurasawa, H. Wakaki, A. Takasu, and J. Adachi. Data

Allocation Scheme Based on Term Weight for P2P Infor-
mation Retrieval. In Proceedings of the 9th annual ACM
international workshop on Web information and data man-
agement (WIDM’07), 2007.

S. Michel, M. Bender, and N. Ntarmos. Discovering and
Exploiting Keyword and Attribute-Value Co-occurrences to
Improve P2P Routing Indices. In Proceedings of ACM
15th Conference on Information and Knowledge Manage-
ment (CIKM’06), 2006.

S. E. Robertson, S. Walker, S. Jones, M. M. H. Beaulieu, and

M. Gatford. Okapi at TREC-3. In Proceedings of TREC-3,
pages 109-126, 1994.

G. Skobeltsyn, T. Luu, I. P. Zarko, M. Rajman, and
K. Aberer. Web Text Retrieval with a P2P Query-driven In-
dex. In Proceedings of the 30th annual international ACM
SIGIR conference on Research and development in informa-
tion retrieval (SIGIR °07), 2007.

I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Bal-
akrishnan. Chord: A Scalable Peer-to-Peer Lookup Service
for Internet Applications. In Proceedings of the 2001 Con-
ference on Applications, Technologies, Architectures, and
Protocols for Computer Communications (SIGCOMM ’01),
pages 149-160, 2001.

T. Suel, C. Mathur, J. Wu, J. Zhang, A. Delis, M. Kharrazi,
X. Long, and K. Shanmugasundaram. ODISSEA: A Peer-to-
Peer Architecture for Scalable Web Search and Information
Retrieval. In Proceedings of the 6th International Workshop
on the Web and Databases (WebDB’03), 2003.

Y. Zhu and Y. Hu. Efficient, Proximity-Aware Load Bal-
ancing for DHT-based P2P Systems. IEEE Transactions on
Parallel and Distributed Systems, 16(4):349-361, 2005.

Authorized licensed use limited to: UNIVERSITY OF TOKYO. Downloaded on April 30,2010 at 02:51:27 UTC from IEEE Xplore. Restrictions apply.

