Data Allocation Scheme
Based on Term Weight for P2P Information Retrieval

Hisashi Kurasawa
The University of Tokyo
2-1-2 Hitotsubashi
Chiyoda-ku, Tokyo, JAPAN
kurasawa @ nii.ac.jp

Atsuhiro Takasu
National Institute of
Informatics
2-1-2 Hitotsubashi
Chiyoda-ku, Tokyo, JAPAN
takasu @nii.ac.jp

ABSTRACT

Many Peer-to-Peer information retrieval systems that use a
global index have already been proposed that can retrieve
documents relevant to a query. Since documents are allo-
cated to peers regardless of the query, the system needs to
connect many peers to gather the relevant documents. We
propose a new data allocation scheme for P2P information
retrieval that we call Concordia. Concordia uses a node to
allocate a document based on the weight of each term in the
document to efficiently assemble all the documents relevant
to a query from the P2P Network. Moreover, the node en-
codes the binary data of a document with an erasure code,
and Concordia produces an efficient redundancy for coun-
teracting node failures.

Categories and Subject Descriptors

H.3.3 [Information Storage and Retrieval]: Informa-
tion Search and Retrieval—Search process; H.3.4 [Informa-
tion Storage and Retrieval]: Systems and Software—
Distributed systems

General Terms

Algorithms, Design, Experimentation

Keywords

Peer-to-Peer information systems, distributed IR, Data al-
locating

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

WIDM’07, November 9, 2007, Lisboa, Portugal.

Copyright 2007 ACM 978-1-59593-829-9/07/0011 ...$5.00.

33

Hiromi Wakaki
Toshiba R & D Center
1 Komukai Toshiba-cho,
Saiwai-ku
Kawasaki-shi, Yokohama,
JAPAN

hiromi.wakaki @toshiba.co.jp

Jun Adachi
National Institute of
Informatics
2-1-2 Hitotsubashi
Chiyoda-ku, Tokyo, JAPAN
adachi@nii.ac.jp

1. INTRODUCTION

The information obtained from networks has been explo-
sively increasing, and search engines are now one of the most
important applications on the Web. Almost all search en-
gines are based on centralized systems, such as Google [3].
However, large-scale centralized search systems are expen-
sive and expertise in various areas of system management is
needed to maintain their scalability and load balance. Some
researchers challenge these problems by using Peer-to-Peer
techniques and propose the use of Peer-to-Peer information
retrieval (P2P IR) systems.

Information retrieval systems are used to acquire docu-
ments relevant to a query. The quality of the search and
the gathering of relevant documents are very important is-
sues for P2P IR. In IR, the queries are usually given as a
set of terms. Then, the system calculates the relevance be-
tween the query terms and the documents in a collection,
and presents the documents ranked by the relevance. Rele-
vance is usually measured using the term frequency, which
is the number of times the term occurs and the document
frequency, which is the number of documents that contain
the term. We need a method to retain this frequency infor-
mation in order to develop a more effective and efficient IR
system on a distributed environment like P2P, and because
the documents are distributed on a P2P Network. Several
indexing methods have recently been proposed that solve
this problem [8, 11]. However, the use of this frequency in-
formation is limited in current P2P systems. For example,
we have to gather ranked documents from publishers or from
nodes that keep replicas, which also requires a lot of time.
Therefore, we need a scheme that provides an index that
maintains the frequency information as well as a function to
gather the relevant documents.

In this paper, we propose a scheme that uses a new dis-
tributed data allocation scheme for P2P IR, which we call
Concordia. Concordia aims at quick gathering of docu-
ments relevant to a query from a P2P Network. Concor-
dia allocates a document to the appropriate nodes based
on the weight of each term in the document. Concordia

provides two kinds of data allocation methods. In particu-
lar, Concordia-1 allocates the replica of a shared document
to the nodes appropriate to each hash value of the top n
high weight terms of the document. By using this scheme,
we need fewer requests to gather documents relevant to a
query than requests to gather irrelevant ones. In addition,
in Concordia-2, we divide the binary data of a document
into n chunks that are encoded with an erasure code [26].
Concordia-2 also allocates an appropriate amount of chunks
based on the weight of each term in the document to nodes
responsible for the term. The document can be assembled
from any k out of the n chunks. This means that even if
some nodes that store chunks leave the network, the docu-
ment can be regenerated. As a result, Concordia efficiently
gathers documents, that are relevant to a query from a P2P
Network, by using a node allocating the encoded binary data
of a document, based on the weight of each term in the doc-
ument. Furthermore, Concordia-2 is able to reduce the doc-
ument loss probability as compared to Concordia-1. This is
because Concordia-2 places chunks encoded with an erasure
code, while Concordia-1 places replicas of entire documents.
The main contributions of this paper are as follows:

e We propose an indexing method that efficiently retains
the term and document frequencies. With this index
we can calculate the relevance of queries and docu-
ments used in state-of-the-art IR systems.

e We propose a data allocation scheme that quickly gath-
ers relevant documents by accessing indices and docu-
ments simultaneously.

The rest of this paper is organized as follows. Section 2
overviews the related works concerning P2P IR and its prob-
lems. Section 3 describes Concordia in more detail. Section
4 presents the results from experiments using our scheme.
Finally, Section 5 concludes this work and gives a brief out-
look on our future work.

2. RELATED WORK

We overview the related works from three aspects: traffic,
indexing, and redundancy.

Conventional P2P IR methods search documents by prop-
agating a query to its neighbors [2, 10]. Although these
methods adapt to flexible requests, it is difficult to rank all
the documents shared in a network by only propagating a
query. If a user checks all the documents, the user’s sys-
tem has to connect to all the nodes in the network, and this
causes a heavy traffic problem.

Some P2P IR systems solve the heavy traffic problem by
indexing documents like centralized IR systems [8, 11, 24].
These P2P IR systems reduce the traffic and response time
by sending a request to the nodes that may contain the
relevant documents by efficiently referring to the global in-
dex. In P2P IR systems using unstructured P2P networks,
a node instead of a query floods a global index with a gos-
sip algorithm and shares information about peers’ document
collections [11]. On the other hand, in P2P IR systems using
structured P2P networks, a node makes a global index using
a distributed hash table (DHT) [8, 24]. Every node main-
tains a part of the global index related to the responsible
terms on the DHT. Two types of global indices have already
been proposed. One is a term-to-peer index where the terms
are indexed by peer [8]. Each node publishes a document

collection summary and sends the summary to the nodes
responsible for the terms included in the summary on the
DHT. As a result, every node maintains a peer list for the
responsible terms. Many peer selection strategies have been
proposed for more efficient searching, such as CORI [9], an
overlap awareness strategy [7], a global document frequency
estimation [6], and term co-occurrences [5, 17]. The other is
a term-to-document index where the terms are indexed by
document [24]. Every node maintains a document list for
the responsible terms on the DHT instead of a peer list. Al-
though making a term-to-document index costs more due to
document insertion when compared to a term-to-peer index,
the term-to-document index can directly refer to the term
frequency of a specific document.

When taking the search response time into consideration,
P2P IR systems need a lot of time compared to central-
ized IR systems, because the indices and documents are
distributed on a P2P Network, and we need to connect to
many other nodes for referring to indices and gathering doc-
uments relevant to a query. P2P IR systems can quickly
calculate the relevance scores and rank documents and re-
duce the search response time by using a term-to-document
index. Moreover, some approaches produce smaller traffic
and quicker response times by improving the multi-term
query execution [27] or a query-driven index [22]. These
systems focus on only the efficiency of querying and rank-
ing documents and don’t focus on the efficiency of gathering
documents. Almost all the existing P2P IR systems using a
global index allocate documents regardless of the query, so
the systems need to connect to a lot of nodes to gather the
relevant documents. The efficiency of gathering data from a
P2P Network is improved by using redundant data alloca-
tion strategies that use replication [10, 15] or erasures [14].
These strategies allocate shared data based on the request
frequency and not based on the term frequency informa-
tion in a document. Although the response performance of
these strategies for popular queries is good, because their
allocation schemes are based on the request frequency, the
response for unpopular queries needs a lot of time. The ideal
P2P IR system can search for documents that are relevant
to a query like centralized IR systems by indexing all the
documents shared in the network, and can gather the rele-
vant documents quickly by allocating the documents based
on the query.

Therefore, we think that a scheme is necessary that uses
a new distributed data allocation for P2P IR. With this
scheme, we can search for documents just like centralized IR
systems, and can efficiently gather documents relevant to not
only a popular queries, but also unpopular ones. Moreover,
we think that all the documents shared in a network need
to be redundant against node failures.

3. ARCHITECTURE OF CONCORDIA

The features of Concordia are as follows.

e Concordia can calculate the relevance scores of each
document for a query By using the terms indexed by
the document using the DHT.

e Concordia efficiently gathers documents relevant to a
given query by using a data allocation scheme, where
each document is allocated to peers based on the weight
of terms included in the document.

DHT each nodes responsible
for terms based on hash table

Node A Hash {bird}
term ‘ data important

\ Create structured index using DHT|

term weight filename

Doc1 1. blrd 50 e L

Ilike a bird. —) 2. wish 43 Doc 1] 50 (FEiet)rEsh Pidh

| wish a bird. 3 ke 32 Doc 3| 484 Hasp
\ Doc 2¥21 P

Make n replica and N B Hash {like}
allocate nodes responsible to Doc 1| 32 Hash foid)
top n high weight keywords o
o = g 1
lle lie)
Doc 8| 63 |(File8) F&shidy

Figure 1: Indexing and Data Allocation
(Concordia-1)

e Concordia efficiently establishes document redundancy
for node failures (Concordia-2) by coding the binary
data of a document with an erasure code.

3.1 Overview of Concordia

Concordia is a scheme used for searching and scoring doc-
uments in a similar way as centralized IR systems and ef-
ficiently gathers documents relevant to a query. Concordia
allocates a document based on the weight of each term in
the document. Each node manages the indices of its respon-
sible terms and stores documents that weigh high for any
one of the terms. In this paper, we don’t focus on the query
execution like [22, 27], but on the gathering process.

Concordia-1.

In Concordia-1, a node creates a global index on the DHT.
The global index consists of inverted indices for each term.
An inverted index for a term is held by the appropriate node,
whose hash value is near the hash value of the term. The
inverted index maintains four values for a document, such
as the file name, the term weight in the document, the hash
value of the important terms in the document, and a pointer
of the data of the document. A node registers the term
weight and hash values of the important terms in the doc-
ument (Section 3.2) to the indices that are related to each
term in the document. At the same time, the node allocates
document replicas to the nodes responsible for each term
ranked within the top n weights in the document (Section
3.4). Figure 1 shows the indexing and data allocation in
Concordia-1.

When given a query consisting of a set of terms, the sys-
tem connects directly to the nodes responsible for each term
in the query and refers to each index in the nodes. The sys-
tem calculates the precision of each document to the query,
and gathers the relevant documents with high precision val-
ues from the nodes. If the nodes don’t have a relevant doc-
ument, the user refers to the index for the hash values of
the other important terms in the document and gathers the
documents from another node that is near any one of the
hash values.

Concordia-2.

In Concordia-2, a node creates a global index on the DHT,
where the term weights are the same as Concordia-1, but the
stored data consists of chunks of encoded and decomposed
documents (Section 3.3. The node divides the binary data
of a document into n chunks that are encoded with an era-

35

DHT

ode A Hash {bird}

[Create structured index using DHT |

term weight

D/%%!g bira. L it ename| fefM, | data |important
| wish a bird. 3. like 32 Doc 1| 50 Hamibwg%)
Ers 4|/'1'" Doc 3/ @ Hash
ncode witl Hash {c},
s 1] 21 10 | i |
Node B Hash{like}
oo Doc 152 [GD [Tenbe)
000 Doc4| 12 |@ Hesh &
AIIoc te chunks based Doc 8| 63 In by (ﬁ%}

eyword weight

Figure 2: Indexing and Data Allocation
(Concordia-2)

Doc
D oc 8

Hash (A)
Hash (C)

Hash (B)

Figure 3: Retrieving and Gathering (Concordia-2)

sure code. By using the erasure code, the document can
be recovered from any k value out of the n chunks. Also
the node allocates an appropriate number of chunks based
on the weight of each term in the document to the nodes
responsible for the term (Section 3.4). That is, the more
important the terms of the document a node is responsi-
ble for, the more chunks the node stores. We determine the
number of chunks that each node stores in the following way;
we set the amount of chunks ratio in n chunks that stored
with a term index equal to the term weight ratio in the sum
of the term weights in the document. The document can still
be assembled by using this allocation method, even if some
nodes that store chunks leave. Figure 2 shows the indexing
and data allocation in Concordia-2.

The system calculates the relevancy between the given
query and documents using the index in the same way as
Concordia-1. On the other hand, it assembles the chunks of
the relevant documents from the nodes. Figure 3 shows the
retrieving and gathering of data in Concordia-2. If the user
focuses on precision, the user gathers chunks from the highly
relevant documents. On the other hand, if the user focuses
on recall, the user gathers all the chunks of documents that
are stored at the nodes.

After retrieving and gathering data, a document is de-
coded if the user has over or equal to k chunks of the docu-
ment. If the number of chunks that the user could get is less

Chunk of Doc 1 decode [Doc 1

over or equal to k chunks

Figure 4: Decoding Documents (Concordia-2)

than k, the user gathers extra chunks. If the nodes don’t
have enough chunks of a relevant document, the user refers
to the index for the hash values of the important terms in
the document and gathers the extra chunks of the document
from another node that is near any one of the hash values.
Figure 4 shows the decoding of documents in Concordia-2.

3.2 Term Weighting Formula in P2P
Environment

The term weighting formula is a very important factor for
Concordia for accurately searching and efficiently gathering
documents. Concordia takes a lot of time making a global
index containing the term weights, but reduces the docu-
ment retrieval time. Many information retrieval methods
have been proposed, such as the Vector Space Model and
the Probabilistic Model.

We adopted the Probabilistic Model and use the term
weighting formula presented in [12], which is a variation of
BM25 [20]. For a term t in a document d, the weight of ¢
for d is defined as:

N (k+1)-tf

BT A (g sy rwy

where w(t,d) represents the weight of term ¢ appearing in

document d, k and « are the parameters, N is the number of

documents in the collection, tf is the occurrence frequency

of t in d, df is the number of documents containing t, dl is

the length of d, and avdl is the average document length.
The relevance score of query @ is defined as:

R(Q,d) = w(t,d).

teQ

w(t,d)

(2)

When calculating the term weight defined in Eq. (2), we
need to know the total number N of documents, the average
document length avdl, and the document frequency df, as
well as the term frequency ¢f. In an autonomous and dis-
tributed environment like P2P, it is difficult to determine IV,
avdl, and df, because the documents are allocated through-
out the network. We decided to adopt a method that makes
use of a global index on the DHT to calculate df, which
is similar to related works [8, 25]. Each node registers the
document information for every term in the document in its
collection to the node responsible for the term on the DHT.
As a result, every node maintains an index concerning the
responsible term. We can get the number of documents con-
taining the term, that is df, by referring to the index.

The number of documents in collection N and the av-
erage document length avdl may be estimated by using the
hash sketches [13], such as the distributed hash sketches [18].
However, for our Concordia prototype, we decided that the
numbers would be set constants for precisely comparing the
relevance scores of the documents using the data allocation
scheme in Concordia.

3.3 Data Partitioning with an Erasure Code

In Concordia-2, a node divides the binary data of a docu-
ment into n chunks that are encoded with an erasure code.
The document can be recovered from any k value out of
the n chunks by using this erasure code. That is, even if
(n — k) chunks are not gathered due to node failures, we
can still assemble the document. There are several kinds of
erasure codes, such as a scheme using n coordinate pairs on
a polynomial of a degree (k — 1) [21], and a scheme using

36

simultaneous equations containing k parameters [14]. The
decoding method of these schemes is used to solve a set of
linear equations.

The (k, L, n) ramp secret sharing scheme [26] is a variation
of the secret sharing scheme [21]. In this scheme, the bit-
length of each chunk is % of the binary data of the document.
The scheme is defined as:

S = Sol[S1][S2][-+ - ISt
y =So+Siz+- -

+SLmL+r1mLH+~ . -+rn,Lmk71 mod p,

where S is the binary data of a document, || is the bit
concatenation operator, and p is a prime number satisfying
p > max(S;)(0 <i < L).

The size of a chunk is about 2

7, and the size of all the

chunks is about %
We use the (k, L, n) ramp secret sharing scheme in Concordia-

2. We define L = k + 1 to reduce the size of a chunk.

3.4 Data Allocation Scheme Based on the Term
Weight

In P2P IR, not only are the searched documents relevant
to a query important, but efficiently gathering the docu-
ments is also important. If a node that has an index about
a term in a query holds a document relevant to the query, the
system can reduce the number of requests to the other nodes
and can efficiently gather the relevant documents. However,
if every node holds the documents that an index in the node
refers to, the size of the data shared in the network is very
large. We reduce the size using the term weights.

To calculate the relevance given by Equation (2), we need
to connect to a set of nodes that are responsible for the
query term. If the relevant documents are allocated to the
same nodes, we skip connecting to the other nodes when
gathering the relevant documents. That is, if the binary
data of a document is allocated based on the weight of each
term in the document, the more relevant document is easily
gathered than any of the other documents.

Therefore, Concordia-1 allocates a replica of a shared doc-
ument to the nodes appropriate to each hash value of the top
n highly weighted terms of the document. In addition, in
Concordia-2, a node divides the binary data of a document
into n chunks that are encoded with an erasure code. The
node also allocates an appropriate amount of chunks based
on the weight of each term in the document to the nodes
responsible for the term.

3.5 Node and Data Management using DHT

The DHT is a distributed system that provides a lookup
service. A single key is assigned to data with a common hash
function. A range of key values are assigned to each node,
and this node is responsible for the data whose key value is
within the range. A node is responsible for maintaining the
data with a key that is near the key of the node. The DHT
is designed to be scalable, fault tolerant, and self-organizing.
The most popular DHTs are Chord [23], Tapestry [28], CAN
[19], and Kademlia [16].

In Concordia, a node creates a global index and manages
the documents by using the DHT. Each node is responsible
for the terms with keys that are near the key of the node.
Each node receives information concerning the documents
containing any one of its responsible terms from the other

<top>

<head> Tipster Topic Description

<num> Number: 101

<dom> Domain: Science and Technology

<title> Topic: Design of the ”Star Wars” Anti-missile Defense
System

<desc> Description:

Document will provide information on the proposed configuration,
components, and technology of the U.S.’s "star wars” anti-missile
defense system.

<smry> Summary:

Document will provide information on the proposed configuration,
components, and technology of the U.S.’s "star wars” anti-missile
defense system.

<narr> Narrative:

A relevant document will provide information which aids descrip-
tion of the design and technology to be used in the anti-missile de-
fense system advocated by the Reagan administration, the Strate-
gic Defense Initiative (SDI), also known as ”star wars.” Any re-
ported changes to original design, or any research results which
might lead to changes of constituent technologies, are also rel-
evant documents. However, reports on political debate over the
SDI, or arms control negotiations which might encompass the SDI,
are NOT relevant to the science and technology focus of this topic,
unless they provide specific information on design and technology.
<con> Concept(s):

1. Strategic Defense Initiative, SDI, star wars, peace shield

2. kinetic energy weapon, kinetic kill, directed energy weapon,
laser, particle beam, ERIS (exoatmospheric reentry-vehicle inter-
ceptor system), phased-array radar, microwave

3. anti-satellite (ASAT) weapon, spaced-based technology, strate-
gic defense technologies

<fac> Factor(s):

<nat> Nationality: U.S.

</nat>

<def> Definition(s):

</top>

Figure 5: Sample of TREC-2 ad hoc & TREC-3
routing topics

nodes, and manages the indices of the terms. We adopted
the Kademlia DHT into our system. By using Kademlia, a
node can contact at most O(logN) nodes to find the binary
data of a document or a node in an N-node network, with a
high probability.

4. EVALUATION

The purpose of Concordia is to achieve a mechanism to
gather number of documents relevant to a query. In addi-
tion, Concoridia-2 aims at robust document replication for
node failures.

4.1 Documents Gathered with only
Connections to Index Nodes

In Concordia, the system first obtains the data from the
documents relevant to a query from the nodes responsi-
ble for an index of each term in the query. The data in
Concordia-1 are replicas of the relevant documents and the
data in Concordia-2 are chunks of relevant documents. At
that time, the number of requests to the other nodes is equal
to the number of terms in the query, that is the maximum
distributed environment assumed for the experiment. For
our simulation experiment, we evaluated the search results
before extra data is gathered from the other nodes, not in-
cluding the index nodes.

The evaluation is performed on the Tipster 3 collection
that was used at TREC [1]. The collection consists of 336,310
documents, and includes material from the San Jose Mer-
cury News (1991), the Associated Press (1990), U.S. Patents

37

T
baseline
2@ replicq = =— =

1@ replica
5 replica
4 replica -

Interpolated Recall- Precision Averages at n recall

Recall

Figure 6: Interpolated Recall- Precision
(Concordia-1)

Average

baseline
k/n= 8.05 — —
k/n=8.18 -

\ k/n= .20
v k/n= 8.25
8.6 | -

0.4l -

oo

Interpclated Recall- Precisien Averages at n recaoll

Recall

Figure 7: Interpolated Recall- Precision Average
(Concordia-2)

(1983-1991), and Information from the Computer Select disks
(1991, 1992) copyrighted by Ziff-Davis. We removed the
stopwords and stem each remaining term using the Porter
stemmer [4]. Then, the term weights in each document are
calculated using Eq. (2). We temporarily set k to 100 and
a to 0.5. The standard averaged precision for 50 topics in
TREC-2 ad hoc & TREC-3 routing topics is evaluated by
the TREC Eval tool. Figure 5 shows a sample of the topics.
Figure 6 shows the results from an evaluation in Concordia-
1, and Figure 7 shows the results in Concordia-2. The base-
line in each figure was the standard averaged precision of the
search results after gathering all of the relevant documents,
i.e., the performance of centralized IR scheme.

In each method, the search result with a higher redundant
coding is more precise. In contrast, a search result with
a lower redundant coding is less precise, and the system
has to gather extra data to retrieve the relevant documents.
Moreover, when comparing Concordia-1 with Concordia-2
at the same redundancy, the search result in Concordia-1
was better.

550 T T T T T T T

T T
baseline
2@ replicq = =— =
1@ replica
5 replicq, -

No. of connected nodes for getting n docs
w
EH
T

e i e
=] et it ik Eaimactin damnall o I I f N
e pl] 282 3ee 402 582 see 7ee

No. of docs

Figure 8: Number of Connected Nodes for
Gathering Top n Relevant Docs (Concordia-1)

1lee T T T T T T

acllselmel
1000 - k/n= 8.85 — = |
k/n= 8.18
k/n= 8

k/n=s-8.25

Ne. of connected nedes fer getting n docs

382 489 582

No. of docs

i) L] L]

Figure 9: Number of Connected Nodes for
Gathering Top n Relevant Docs (Concordia-2)

4.2 Number of Connected Nodes for
Gathering Documents

We conducted a simulation experiment on the efficiency of
gathering relevant documents in Concordia. The efficiency
was evaluated by measuring the number of connected nodes
for gathering the top n relevant documents.

The evaluation was performed on the same collection and
topics as the experiment in section 4.1. We simply set the
number of nodes in the network to the number of terms in
the collection. Figure 8 shows the results of the evaluation in
Concoredia-1, and Figure 9 shows the results in Concordia-
2. The baseline in each figure was a method that randomly
allocates the encoded binary data of the documents to the
peers.

It is clear from the results in Figs. 8 and 9 that Con-
cordia can gather the relevant documents from less nodes
than a random allocation scheme. That is, in Concordia,
the system can efficiently gather the documents relevant to
a query from a P2P Network by using a node allocating the

38

T T T T T T T T
baseline

Concordia-1 5 replica =< — .

Response time for searching and gathering top n docs (sec)

@ 28 48 B2 B2 182 128 142 168 188 202
No. of docs

Figure 10: Response Time for Gathering Top n
Relevant Docs (Concordia-1)

binary data of a document based on the weight of each term
in the document. Moreover, when comparing Concordia-1
with Concordia-2 at the same redundancy, the efficiency of
gathering the relevant documents in Concordia-1 is better.

4.3 Search Response Time

Concordia aims at reducing the response time by simulta-
neously accessing indices and documents. We conducted an
experiment using a large distributed computing environment
to evaluate the search response time in Concordia-1.

The evaluation was performed on the same collection as
the experiment in section 4.1. The collection consists of
336,310 documents. We used 248 host nodes in four PC
Clusters. A Pentium M 1.8 GHz processor and 1 GB main
memory computer was used for 127 of the host nodes, and
the other host nodes used a Core 2 Duo 2.33 GHz and 4 GB
main memory computer. The nodes are connected by a gi-
gabit Ethernet. The experiment used 1,240 peers running as
separate processes on the nodes. In the experiment, the sys-
tem allocated five replicas of a shared document. The search
response time was evaluated by measuring the time for gath-
ering the top n relevant documents for 50 topics in TREC-2
ad hoc & TREC-3 routing topics. The average number of
terms in the topics was 62.72. Figure 10 shows the aver-
age search response time for the 50 topics. The baseline in
the figure shows the search response time of another method
that allocates five document replicas to peers regardless of
the query, which is random peers.

It is clear from the results in Figure 10 that Concordia
takes less time to gather documents relevant to a query. This
means that Concordia efficiently gathers documents for the
user that are relevant to a query from a P2P Network, by
using a node allocating a document, based on the weight of
each term in the document. It took more than 180 seconds
to retrieve relevant documents in each result for this exper-
iment. One reason is that the topics contain a lot of terms.
In this Concordia prototype, the system needs to refer to
as many indices as there are terms and this takes a lot of
time. I think that the search response time could be shorter
than for this Concordia prototype if it used query execution
techniques like [27, 22].

Table 1: Comparison of Redundancy

[[Concordia-1 |

Concordia-2

Coding method replica Erasure code
No. of nodes holding data T T~n

File size (piece) F %

File size (total) Fk” 7 -
Document loss probability pk Zf:_ol nCip" " (1 —p) ~pk

T T T
IF32-345-1050

B2k N\ E

Term weight
=
N
&
T
—
1

Term ID

Figure 11: Term Weight Distribution
(ZF32-345-1050)

4.4 Redundancy Using an Erasure Code

Concordia-2 encodes the binary data of a document with
an erasure code, and aims at a stable gathering in a P2P
environment where node failures happen. Table 1 shows a
comparison between the redundancies in Concordia-1 and
Concordia-2. The document loss probability in Concordia-2
is dependent on the distribution of chunks.

We simulated the document loss probability in Concor-
dia. The evaluation was performed on a Tipster 3 collection
document. The unique number of the document was ZF32-
345-1050. Figure 11 shows the term weight distribution of
the document. Figure 12 shows the document loss probabil-
ities in Concordia-1 and Concordia-2.

The document loss probabilities were found to be better in
Concordia-2 than in Concordia-1 when comparing the two
at the same redundancy. That is, Concordia-2 achieves a
more efficient redundancy by using the erasure code.

5. CONCLUSION AND FUTURE WORK

We have proposed Concordia in this paper, which is a
scheme that uses a new distributed data allocation in a
P2P environment. By using a node allocating a document
based on the weight of each term in the document, the sys-
tem efficiently gathers the documents relevant to a query
from a P2P Network. Concordia-1 is designed to efficiently
gather relevant documents. Concordia-1 allocates a replica
of a shared document to the nodes appropriate to each hash
value of the top n high weight terms of the document. In
addition, Concordia-2 is designed to perform an efficient re-
dundancy for counteracting node failures. In Concordia-2,

39

T T T T T
Concordia-1 1@ replica
—— Concordia-1 2@ replica — — -
le-@5 = —"= .- ——€encardia-2 k/n= 0.10 -
~—— Concordia-Z Rrm=—@.05
.

te-10 |- - -]

1e-15 | A . DR]

le-2@ |- o B

Document loss probability
v

1e-25 | "

1e-3@ |- -

1e-35 L L 1 L L L L L L
@.55 8.6 @.65 8.7 @.75 8.8 @.85 @.9

Node failure probability

Figure 12: Document Loss Probability
(ZF32-345-1050)

a node divides the binary data of a document into n chunks
that are encoded with an erasure code. The node also allo-
cates chunks based on the weight of each term in the docu-
ment to the nodes responsible for the term.

We think that Concordia has two problems. One prob-
lem is the storage cost of unpopular documents. A node
allocates replicas of documents regardless of the request fre-
quency in Concordia. As a result, the system quickly gathers
documents relevant to any query at the sacrifice of the pro-
cessing cost of document registrations, from the time that
the documents are registered to the indices in Concordia.
However, the storage cost of unpopular documents is equal
to that of popular documents. The total storage cost of
unimportant data in Concordia is higher than the existing
methods. We should reduce the storage cost while continu-
ing to efficiently gather the relevant documents. The other
problem is the load balance in Concordia. In Concordia, a
node only allocates data based on the weight of each term
in the document. The efficiency of gathering documents
would be reduced if the nodes responsible for very popular
terms had cheaper network environments or poor computing
resources. We should also improve the load balance under-
lying the physical networks and resources.

Therefore, we are working on improving the data distribu-
tion method to resolve these problems. We are also extend-
ing Concordia to a method that can perform a multi-term
query execution.

6.
(1]

[2]
3]
[4]

[5]

[6]

[7]

8]

(12]

(13]

(14]

(15]

(16]

REFERENCES

Text REtrieval Conference (TREC),
http://trec.nist.gov/.

Gnutella, http://www.gnutella.com/.

Google, http://www.google.com/.

Porter stemmer,
http://www.tartarus.org/martin/PorterStemmer)/.

M. Bender, S. Michel, and P. Triantafillou. P2P
Content Search: Give the Web Back to the People. In
Proceedings of the 5th International Workshop on
Peer-to-Peer Systems (IPTPS’06), 2006.

M. Bender, S. Michel, P. Triantafillou, and

G. Weikum. Global Document Frequency Estimation
in Peer-to-Peer Web Search. In Proceedings of 9th
International Workshop on the Web and Databases
(WebDB’06), 2006.

M. Bender, S. Michel, P. Triantafillou, G. Weikum,
and C. Zimmer. Improving Collection Selection with
Overlap Awareness in P2P Search Engines. In
Proceedings of the 28th annual international ACM
SIGIR conference on Research and development in
information retrieval (SIGIR ’05), pages 67-74, 2005.
M. Bender, S. Michel, P. Triantafillou, G. Weikum,
and C. Zimmer. MINERVA: Collaborative P2P Search.
In Proceedings of the 31st International Conference on
Very Large Data Bases (VLDB ’05), 2005.

J. Callan. Distributed Information Retrieval. Advances
in Information Retrieval, Kluwer Academic
Publishers, pages 127-150, 2000.

I. Clarke, O. Sandberg, B. Wiley, and T. W. Hong.
Freenet: A Distributed Anonymous Information
Storage and Retrieval System. Lectured Notes in
Computer Science, 2009:46-66, 2001.

F. M. Cuenca-Acuna, C. Peery, R. P. Martin, and

T. D. Nguyen. PlanetP: Using Gossiping to Build
Content Addressable Peer-to-Peer Information
Sharing Communities. In Proceedings of the 12th
International Symposium on High Performance
Distributed Computing (HPDC' ’03), 2003.

H. Fang, T. Tao, and C. Zhai. A Formal Study of
Information Retrieval Heuristics. In Proceedings of the
27th annual international ACM SIGIR conference on
Research and development in information retrieval
(SIGIR ’0/), pages 49-56, 2004.

P. Flajolet and G. Martin. Probabilistic Counting
Algorithms for Data Base Applications. Journal of
Computer and System Sciences, 31(2):182-209, 1985.
C. Gkantsidis and P. Rodriguez. Network Coding for
Large Scale Content Distribution. In Proceedings of the
2/th Annual Joint Conference of the IEEE Computer
and Communications Societies (INFOCOM ’05), 2005.
J. Kangasharju, K. W. Ross, and D. A. Turner.
Optimizing File Availability in Peer-to-Peer Content
Distribution. In Proceedings of the 26th Annual Joint
Conference of the IEEE Computer and
Communications Societies (INFOCOM ’07), 2007.

P. Maymounkov and D. Mazieres. Kademlia: A
Peer-to-Peer Information System Based on the XOR
Metric. In Proceedings of IPTPS’02, 2002.

40

(17]

(18]

(19]

20]

(21]

(22]

(23]

(24]

25]

28]

S. Michel, M. Bender, and N. Ntarmos. Discovering
and Exploiting Keyword and Attribute-Value
Co-occurrences to Improve P2P Routing Indices. In
Proceedings of ACM 15th Conference on Information
and Knowledge Management (CIKM’06), 2006.

N. Ntarmos, P. Triantafillou, and G. Weikum.
Counting at Large: Efficient Cardinality Estimation in
Internet-Scale Data Networks. In Proceedings of 22nd
International Conference on Data Engineering
(ICDE’06), 2006.

S. Ratnasamy, P. Francis, M. Handley, R. Karp, and
S. Shenker. A Scalable Content-Addressable Network.
In Proceedings of the 2001 Conference on
Applications, Technologies, Architectures, and
Protocols for Computer Communications (SIGCOMM
'01), pages 161-172, 2001.

S. E. Robertson, S. Walker, S. Jones, M. M. H.
Beaulieu, and M. Gatford. Okapi at TREC-3. In
Proceedings of TREC-3, pages 109-126, 1994.

A. Shamir. How to Share a Secret. Commn. ACM,
22(11), 1979.

G. Skobeltsyn, T. Luu, I. P. Zarko, M. Rajman, and
K. Aberer. Web Text Retrieval with a P2P
Query-Driven Index. In Proceedings of the 30th annual
international ACM SIGIR conference on Research and
development in information retrieval (SIGIR ’07),
2007.

I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and
H. Balakrishnan. Chord: A Scalable Peer-to-Peer
Lookup Service for Internet Applications. In
Proceedings of the 2001 Conference on Applications,
Technologies, Architectures, and Protocols for
Computer Communications (SIGCOMM ’01), pages
149-160, 2001.

T. Suel, C. Mathur, J. Wu, J. Zhang, A. Delis,

M. Kharrazi, X. Long, and K. Shanmugasundaram.
ODISSEA: A Peer-to-Peer Architecture for Scalable
Web Search and Information Retrieval. In Proceedings
of the 6th International Workshop on the Web and
Databases (WebDB’03), 2003.

C. Tang and S. Dwarkadas. Hybrid Global-Local
Indexing for Efficient Peer-to-Peer Information
Retrieval. In Proceedings of the Symposium on
Networked Systems Design and Implementation
(NSDI), 2004.

H. Yamamoto. On Secret Sharing Systems Using
(k,1,n) Threshold Scheme. IECE Trans,
J68-A(9):945-952, 1985.

J. Zhang and T. Suel. Efficient Query Evaluation on
Large Textual Collections in a Peer-to-Peer
Environment. In Proceedings of the 5th IEEE
International Conference on Peer-to-Peer Computing
(P2P’05), 2005.

B. Zhao, J. Kubiatowicz, and A. Joseph. Tapestry: An
Infrastructure for Fault-tolerant Wide-area Location
and Routing. Technical Report USB//CSD-01-1141,
U. C. Berkeley Technical Report, 2001.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Karat
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Square721BT-Roman
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

