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Abstract

In this paper, we target on the problem of personal name
disambiguation in search results returned by personal name
queries. Usually, a personal name refers to several people.
Therefore, when a search engine returns a set of documents
containing that name, they are often relevant to several in-
dividuals with the same namesake. Automatic differentia-
tion of people in the resulting documents may help users
to search for the person of interest easier. We propose a
method that uses web directories to improve the similarity
measurement in personal name disambiguation. We carried
out experiments on real web documents in which we com-
pared our method with the vector space model method and
the named entity recognition method. The results show that
our method has advantages over these previous methods.

1 Introduction

The World Wide Web (WWW) has been becoming the
largest text database. Nowadays, web users often use search
engines to find their interested information. As pointed out
in [3], an analysis of five million queries obtained from
the search engine AllTheWeb shows that at least 5-10% of
queries include names of people. Search engines can help
users to search for a person of interest, but due to the name-
sake problem, the results often contain noisy documents
that are related to people other than the person of interest.
For example, the top 100 results for the query “Jim Clark”
from the Google search engine contain at least eight dif-
ferent Jim Clark. Among them, the two people with the

largest number of pages areJim Clark, the Formula One
world champion andJim Clark, the founder of Netscape. In
our research, we try to separate different people in such a
set of results automatically and group documents related to
the same person together.

Disambiguation of personal names has been researched
by some other groups [1, 2, 3, 5, 7, 8]. Our research is dif-
ferent from theirs as follows. We focus on documents men-
tioning to ordinary people in the WWW, while the previous
research focuses on other kinds of people in other kinds of
database such as people mentioned in the newspaper, peo-
ple belonging to the same community network, or famous
people on the WWW. As our target people and document
type have different characteristics from those of the previ-
ous research, we argue that the previous approaches do not
work well with our target data. Therefore, we propose a
new method that can work well with relevant documents of
ordinary people in the WWW. The rest of this paper is or-
ganized as follows. In Section 2, we summarize the previ-
ous research. We describe the targeted data and approaches
used in the previous research. Then in Section 3, we pro-
pose a new method to determine similarities among doc-
uments. We present our improvement to the conventional
document similarity measurement method. In Section 4, we
give details about our name disambiguation system. Exper-
iment results and comparisons with other methods are given
in Section 5. Finally, Section 6 concludes this paper.

2 Related research

In [5], Bagga and Baldwin targeted on newspaper arti-
cles. In newspaper articles, documents related to the same
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person often discuss the same topic and they share many
temrs strongly related with the topic. Therefore, the vec-
tor space model used in this research worked well with this
kind of documents. In [1], Pederson et al. targeted docu-
ments referring to famous people. Naturally, famous peo-
ple have many relevant documents on the WWW. From this
large set of documents, the authors used thesecond order
context vectorsmethod [1] to build context vectors of peo-
ple. These vectors were used to differentiate documents of
different people. In [3, 7, 8], the authors extracted profiles
of namesake people contained in documents. They used
databases like DBLP [13], Amazon [14], pattern matching
technique and natural language processing technique to ex-
tract personal information. Information about social net-
works of people has been used to differentiate namesakes.
In [2], Bekkerman and McCallum extracted a group of peo-
ple simultaneously. The authors proposed two methods to
extract these documents: one that used hyperlink informa-
tion and another that used the Agglomerative Conglomera-
tive Double Clustering (A/CDC) [2] algorithm.

The previous approaches mentioned above would have
limitation if they were applied to the documents relevant to
ordinary people on the WWW for the following reasons.
First, people mentioned in web pages may be in regard to
different specific topics (although their general topics are
often close together). Therefore, the vector space model
may not work well with documents of ordinary people. Sec-
ond, as the people that we target are ordinary, their relevant
documents would likely be few. Hence, methods of creat-
ing their contexts from keywords do not work. Third, docu-
ments on the WWW have many different formats and are
noisy, hence personal information extraction method can
only work with a small fraction of these documents. Finally,
method of utilizing social network information is also lim-
ited, since, in general, we do not know the social network
of the person of interest in advance.

3 Our approach

3.1 Review of vector space model

In the vector space model a term’s weight is calculated
as follows.

tf idf(t, d) = tf(t, d)× log(
N

df(t)
) (1)

wheretf(t, d) is the count of termt appearing in document
d,N is the number of documents in the collection, anddf(t)
is the number of documents containing termt in the collec-
tion of documents.

The vector space model measures document similarities
well when documents discuss the same story. However, in
the task of personal name disambiguation, documents may

not have the same story for the following reason. Normally,
a person attends various events, so his/her documents need
not be about the same story (although they often have the
same general topic). In such a case, there are very few com-
mon terms between documents, so the product of the feature
vectors is not large. This makes the border between pairs
of documents about the same topic and pairs of documents
about different topics ambiguous.

3.2 Measure term feature

We use web directories to help the calculation of term’s
weigh. In a general sense, a web directories may be re-
garded as a kind of a knowledge base, where knowledge
about several topics are collected in several set of docu-
ments on these topics. We choose to use web directories be-
cause many open web directories exist in the WWW, so the
cost of preparing a collection is at minimum. In the discus-
sion beyond, we will use “a knowledge base” and “web di-
rectories” alternatively to refer a collection of documents of
several topics. We name our method “Similarity via Knowl-
edge Base”(SKB). We use the knowledge base to find out
keywords in documents and recalculate their weight. The
details are as follows.

A knowledge base
The knowledge base consists of several sets of docu-

ments on several topics. We call a set of documents in the
knowledge base a directory. In the traditional vector space
model, all documents in the corpus are regarded as unre-
lated to each other. In contrast, in our knowledge base, doc-
uments belonging to the same set are related to each other,
while documents belonging to different sets are unrelated to
each other. We use this characteristic of the knowledge base
to modify the term weight calculation.

Modification of tf
In [9], we proposed a modification method fortf to im-

prove measurement of terms’ weight. Here, we present a
brief summarization of that method. Suppose that a doc-
umentd is close in topic with a set of documentsDir in
the knowledge base. Since relevant text related to a per-
son in a web document tends to be short, terms strongly
related to a document’s topic may not appear frequently.
On the other hand, a directory has abundant text, so terms
strongly related to the directory’s topic appear frequently in
the directory. We can use the term frequency in the direc-
tory to modify the term frequency in the web document as√
tf(t, d)× tf(t,Dir) to increase the term frequencies of

terms strongly related to the document’s topic.
As a knowledge base has several directories, we want

to make this new feature measurement comparable among
them to facilitate the calculation in the next step. Therefore,
we normalize the term weight by dividing it by the size of
each directory. The size of a directoryDir is the total num-



ber documents’ word count in that directory and is denoted
aslength(Dir). The following equation is used to compute
the term weight.

tfSKB(t, d,Dir) =

√
tf(t, d)× tf(t,Dir)

length(Dir)
(2)

weightSKB1(t, d,Dir) = tfSKB × log(
N

idf(t)
) (3)

Modification of idf
We present our new idea to further improve measurement

of term weight. In Equation 1 of the vector space model,
the factorlog( N

df(t) ) (also called theidf value) measures
the particularity of a term. The larger document frequency
a term has, the loweridf value it has. With this treatment
with the document frequency, all documents are assumed
to be unrelated to each other. However, a term may appear
frequently in some documents because either it is a common
term or it is strongly related to the topic of the documents.
The vector space model only considers the former case. We
use the directory to consider the latter case.

If a term is strongly related to a topic and appears fre-
quently in the directory corresponding to that topic, then
among documents in the corpus that contain the term, a cer-
tain number of documents will be close to that topic. There-
fore, these documents are not unrelated to each other and
the idf value should be increased. We propose the follow-
ing equation foridf that favors terms strongly related to the
directory’s topic and disfavors other terms.

dfgeo mean(Dir) = K

√√√√
K∏

i=1

df(ti, Dir) (4)

idfSKB(t,Dir) = log(
N

df(t)
× df(t,Dir)
dfgeo mean(Dir)

) (5)

New term feature measurement equation
Combining the above two modifications, we arrive at the

following equation to measure term weight.

weightSKB2(t, d,Dir) = tfSKB × idfSKB (6)

3.3 Measure document similarities

Find directories with topics close to the document
topic
For each document, we choosek directories in the knowl-
edge base whose similarites to the document are the topk
largest values. The similarity between documentd and di-
rectoryDir is measured as follows.

SIM(d,Dir) =
∑

t∈d∩Dir
weightSKB2(t, d,Dir) (7)

We call these topk directories the document’s rep-
resentative directories:Dir1, Dir2, ...Dirk. The set of

common terms betweend and Diri is called the rep-
resentative ofd via directory Diri and is denoted by
Representative(d,Diri).

Measure similarities
Denote a pair of documents as(d1, d2). Denote

the union set of representative directories ofd1, d2 as
Dir1, Dir2, ...Dirl, (k ≤ l ≤ 2k). We calculate the simi-
larity between two representatives and consider it to be the
similarity of d1, d2 via directoryDiri as follows.

SIM(d1, d2, Diri) =
∑
t

weightSKB2(t, d1, Diri)×
weightSKB2(t, d2, Diri)

(8)
where t ∈ Representative(d1, Diri) ∩
Representative(d2, Diri).

After calculating the similarities ofd1, d2 via all repre-
sentative directories, we select the largest similarity value
as the similarity of the document pair(d1, d2).

SIM(d1, d2) = max
i=1,2,..,l

SIM(d1, d2, Diri) (9)

4 Name disambiguation system

4.1 System overview

    Measure

  similarity

among documents

  Documents of

namesake people

Agglomerative

  clustering

    Knowledge base

Documents of the

same person go to

 the same group

Figure 1. Name disambiguation system

Figure 1 shows the overview of our name disambigua-
tion system. The document similarity calculation mod-
ule calculates similarities among documents according to
the SKB2 methods mentioned in Section 3. We chose
documents from the Dmoz Open Directory Project (Dmoz
ODP)[12] as the knowledge base for this module. We
selected 56 directories from Dmoz ODP covering a broad
range of topics in art, business, society, recreation, science,
sports, etc. Each directory contains about 40 to 50 docu-
ments. The grouping module takes as input similarity re-
sults among documents and outputs several groups of doc-
uments.

4.2 Document processing

Preprocessing
We removed stop words and stem words to their root forms.
The stemming algorithm was the Porter algorithm[15].



Next, we selected the 50 terms before and 50 terms af-
ter a personal name to create a bag of words representing
that person. We ignored terms far away from the personal
name because web documents are noisy sources and only
text surrounding the personal name likely contains infor-
mation about that person.

Document similarity calculation
We used 56 directories from the Dmoz ODP and equations
2, 4, 5 and 6 of the SKB2 method to calculate the document
feature vectors via directories. On each document pair, we
used equations 7, 8 and 9 to calculate the similarities via
each representative directory and to select the largest value
as the similarity of this document pair.

Document grouping
We used average link agglomerative clustering algorithm to
cluster documents as follows

Procedure ClusterDocument()
1: Initially, each document forms a singleton cluster
2: Calculate similarities between all clusters
3: while (number of clusters> Nthreshold) do
4: Find the pair of clusters (C1, C2) with the maximum
similarity
5: MergeC1, C2 to form a new clusterCnew
6: Update similarities betweenCnew and other clusters
Ci
7: end while
8: return a set of clusters

HereNthreshold is tuned using a training data set.

5 Experiment

5.1 Baseline methods

We compared our method with two previous methods:
the vector space model (VSM) method[5] and the named
entity recognition (NER) method[8].

Vector Space Model method
In the VSM method, we removed stop words and stemmed
words into their root form by using the Porter stemming al-
gorithm [15]. Then, we chose the 50 terms before and 50
terms after a personal query and usedtf idf(t, d) weight of
these terms to build the feature vectors of documents (equa-
tion 1). We took the inner products of document feature
vectors as the similarities between document pairs.

Named Entity Recognition method
In the NER method, we used the LingPipe software[11] to
extract the names of entities in a document. Then we used
these names to construct feature vectors of the document.
The constitutents of vectors were binary values (1 if a name
appears in the document, 0 otherwise). We took the inner
products of the document feature vectors as the similarities
between document pairs.

Table 1. Data sets
Field Name

Computer Adachi Jun, Sakai Shuichi
science Tanaka Katsumi, John D. Lafferty

Tom M. Mitchell, Andrew McCallum
Paul G. Hewitt, Edwin F. Taylor

Physics Frank Bridge, Kenneth W. Ford
Paul W. Zitzewitz, Michael A. Dubson
Scott Hammer, Thomas F. Patterson

Medicine Henry F. Chambers, David C. Hooper
Michele L. Pearson, Lindsay E. Nicolle
John M. Roberts, David Reynolds

History Thomas A. Brady, William L. Cleveland
Thomas E. Woods, Peter Haugen

5.2 Test data

We selected 24 researchers in four fields: computer sci-
ence, physics, medicine and history, as shown in Table 1.
We sent these names as queries to the Google search engine
and selected the top 100 document results containing the
personal name. After removing the non-html documents,
each collection had about 75 to 90 documents: among them
about 20 to 60 documents were documents related to our se-
lected person. Hereafter, we call a namesake with 20 to 60
relevant documents in the data set a major person and other
namesakes with a few number of relevant documents in the
data set minor people.

We tried to create test data as close to those of the real
application as possible. In a real information retrieval sys-
tem, we would not know the number of namesakes that re-
sults documents refer to in advance. Also, in the results set,
some people would have many relevant documents while
other people would have only a few relevant documents.
Therefore, we created pseudo-namesake data by mixing two
document collections corresponding to the search results for
two names of two people in different research fields. Each
pseudo-namesake data created in this way had two major
namesakes and several other minor namesakes.

We divided the 24 collections into two sets: a training
set and a test set. The training set had 16 collections (4
collection/field× 4fields), and the test set had 8 collections
(2 collection/field× 4fields). We created pseudo-namesake
data as mentioned above from collections of the training set
and the test set. This yielded4 × 4 × (42

)
= 96 pseudo-

namesake data for the training set and2 × 2 × (42
)

= 24
pseudo-namesake data for the test set.

5.3 Evaluation of top clusters

Labeling documents
Each test data has two major people referred in the dataset.
We removed clusters whose size was less than or equal to



three. From remaining clusters, we select two clusters, each
of the two contains the most number of documents relevant
to each major person. We mark documents in each cluster
with the label of that major person’s name.

Evaluation metrics
DenoteNi labeled as the number of documents being labeled
with ith person’s name label (i = 1, 2). DenoteNi correct
as the number of documents correctly being labeled withith
person’s name label (i = 1, 2). DenoteNi total as the total
number of documents relevant toith person (i = 1, 2). We
calculate the top averaged precision (Ptop aver), top aver-
aged recall (Rtop aver) of the labeling result. We also cal-
culated the harmonic mean (Fmeasure top aver) of Ptop aver
andRtop aver.

Pi =
Ni correct
Ni labeled

(10)

Ri =
Ni correct
Ni total

(11)

Ptop aver =
P1 + P2

2
(12)

Rtop aver =
R1 +R2

2
(13)

Fmeasure top aver =
2Ptop aver ×Rtop aver
Ptop aver +Rtop aver

(14)

Performances
We investigated the performances of different methods
by varying the stopping condition of the clustering al-
gorithm (i.e. the number of clusters) and measured
Ptop aver, Rtop aver and Fmeasure top aver metrics of top
clusters. Figures 2, 3, 4 and 5 show the results for VSM,
NER, SKB1, and SKB2, respectively. The comparison of
the four methods in terms ofFmeasure top aver value are
shown in Figure 6.
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Figure 2. Performance of VSM method for top
clusters

Tuning the number of clusters
Using the training set we found the number of clusters for
the stopping condition of the clustering algorithms to best
achieve theFmeasure top aver value. We divided the origi-
nal data set to a training set and a test set randomly 50 times.
This yields 50 (training data, test data) pairs of data sets. We
repeated tuningNthreshold using training data and verifying
performances using test data 50 times and took the averaged
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Figure 3. Performance of NER method for top
clusters
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Figure 4. Performance of SKB1 method for
top clusters

results. The averagedNthreshold values are 74.5, 49.1, 66.5,
and 73.6, for VSM, NER, SKB1, and SKB2, respectively
(Table 2). At these averagedNthreshold values, VSM, NER,
SKB1, and SKB2 achieved the averagedFmeasure top aver
values of 44.3%, 51.3%, 52.7%, and 52.0% with the train-
ing set. These numbers of clusters were applied for the stop-
ping condition of the clustering algorithm in the test exper-
iment. The performances of the training and test sets in
terms of the averagedFmeasure top aver value are shown in
Table 2.

Comparison
As shown in Table 2, the bestFmeasure top aver values of
SKB1 and SKB2 are 52.7% and 52.0%, respectively. These
values are a litte better than that of NER (51.3%) and are
much better than that of VSM (44.3%). In the test set,
the SKB1 and SKB2 also outperformed VSM and NER in
terms of the averagedFmeasure top aver. The performance
of SKB1 and SKB2 are 50.3% and 51.4%, respectively,
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Table 2. Tuning parameters and testing re-
sults for top clusters

Method Nthreshold Training set Test set
VSM 74.5 44.3% 41.5%
NER 49.1 51.3% 49.0%
SKB1 66.5 52.7% 50.3%
SKB2 73.6 52.0% 51.4%

compared with 49.0% for NER and 41.5% for VSM (Ta-
ble 2).

5.4 Evaluation of large clusters

Normally, people may appear in the WWW with many
appearances, so their documents’ clustering result may have
several groups, each group corresponds with an appearance.
Even though we cannot group different appearances to-
gether, by showing different appearances in different groups
we can still help users to navigate the search results and
make it easier to find their person of interest. Therefore,
we try to evaluate all clusters whose sizes are larger than
three. The details on calculation of evaluation metrics can
be found in [9]. The evaluation results of four methods
VSM, NER, SKB1 and SKB2 and comparison among them
are shown in Table 3.

Table 3. Tuning parameters and testing re-
sults for large clusters

Method Nthreshold Training set Test set
VSM 66.0 50.2% 47.2%
NER 57.3 51.8% 49.6%
SKB1 70.9 56.7% 55.0%
SKB2 77.7 57.9% 57.6%

6 Conclusion

We have proposed a new method to measure document
similarities in personal name disambiguation. Our method
uses a knowledge base in the similarity calculation. Basi-

cally, a knowledge base is a collection of documents on sev-
eral topics. We use this collection of documents to calculate
the documents’ feature vectors and use the feature vectors’
inner product for the document similarities. We then in-
put these document similarity results into an agglomerative
clustering algorithm to group related documents together.
We carried out experiments on real web data and verified
the advantage of our method over the vector space model
method and the named entity recognition method.
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