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ABSTRACT
Results of queries by personal names often contain docu-
ments related to several people because of the namesake
problem. In order to differentiate documents related to dif-
ferent people, an effective method is needed to measure doc-
ument similarities and to find documents related to the same
person. Some previous researchers have used the vector
space model or have tried to extract common named en-
tities for measuring similarities. We propose a new method
that uses Web directories as a knowledge base to find shared
contexts in document pairs and uses the measurement of
shared contexts to determine similarities between document
pairs. Experimental results show that our proposed method
outperforms the vector space model method and the named
entity recognition method.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval—clustering, information filtering

Keywords
Personal name searching, name disambiguation, document
similarity

1. INTRODUCTION
The prevalence of the Internet in daily life has made the

World Wide Web(WWW) a huge resource for information.
Information in the WWW comes from many sources, includ-
ing websites of companies, organizations, communities, and
personal homepages, etc. In such a heterogeneous environ-
ment, information about one person tends to be scattered in
various places. Suppose we want to search for information
about a person. We may send a query containing his/her
name to a search engine and get a set of documents contain-
ing his name. However, because of the name sake problem
the set of documents may contain documents related to sev-
eral people. For example, the top 100 pages from the Google
search engine for the query “Jim Clark” contain at least
eight different Jim Clarks. Among them, two people with
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the largest number of pages are Jim Clark the Formula one
world champion (46 pages) and Jim Clark the founder of
Netscape (26 pages). It would be more easily for end-users
to find their interested person, if we can separate documents
of different people.

Our reseach objective is to determine documents related
to the same person and to group them together, so that end-
users can get their desired information more easily. When
determining documents related to the same person, correctly
measuring the closeness between pairs of documents is very
crucial because it directly affects determining performance.

In some previous research [1, 2, 3, 9, 10, 11, 12], several
methods have been proposed to determine similarities be-
tween document pairs. We propose a new method to effec-
tively measure document pair similarities. We use several
sets of documents on several topics as intermediate docu-
ments to find out shared contexts in document pairs and
measure the weight of these shared contexts. These sets
of documents can be regarded as a knowledge base, an in-
formation source on various topics. We chose to use Web
directories for the knowledge base because they are easy to
get from the Web. We used the Dmoz Web directories [5] in
our research.

The rest of this paper is organized as follows. In section
2, we summarize the related research. Then in section 3, we
propose a new method to measure similarities among docu-
ments. We present our idea for measuring similarities and
give details of the calculation process. Experiment results
and comparisons with other methods are given in section 4.
Finally, section 5 concludes our work.

2. PROBLEM STATEMENT AND RELATED
WORKS

Suppose we send a query A to a search engine and get
a set of documents S = {d1, d2, ..., dn} and documents in
S are about k people P1, P2, ..., Pk. Our task is to group
n documents in S into groups so that each group contains
documents related to only one person. As we have k people,
the result should contain k groups, each group corresponds
to one person.

In [9], Bagga and Baldwin solved the problem of personal
name coreference in news articles. They used the vector
space model (VSM) [7] to measure similarities between ar-
ticles. A person appearing in some news articles tends to
be related to one event, so that person’s relevant documents
tend to discuss only one story. Therefore, the VSM model
measures similarities very well. However, for people in the
Web, they may appear with more than one event. There-
fore, although their documents are about the same general
topic, their specific topics may deffer. In such a case, where



relationship between pages are weak, the VSM model may
not measure similarities well.

In [1], Pederson et al. calculated words’ context vectors
using word co-occurrence information. Each document was
represented by a context vector using the method second or-
der context vectors [17] (they calculated the average vector
of all context vectors in a document). They used the docu-
ments’ context vectors to cluster the documents into groups.
However, this approach is suitable only for people whose
names appear in a large number of documents because calcu-
lation of words’s context vectors requires word co-occurrence
information from a large number of documents.

In [2], Bekkerman and McCallumn proposed a method
to extract a group of people simultaneously. People in this
group are related to one another so their relevant web pages
may share a same topic and be connected. The researches
proposed two methods to extract a group of people: one that
uses link information in web pages and another that uses the
Agglomerative Conglomerative Double Clustering (A/CDC)
[2] clustering algorithm to group together web pages with
the same topic. The use of this method is limited because
when we search for a person on the Internet, we may not
know about his social network in advance.

Extraction of personal profiles has been used in some other
researches [11, 3, 12]. In [11], Mann et al. used the pat-
tern matching method to extract personal profiles (birth-
day, birth place, occupation, etc). In [3], Guha et al. used
databases like DBLP [14], Amazon [15] to extract books’ au-
thor names and research keywords. In [12], Wan et al. used
natural language processing techniques to extract named en-
tities in documents.

Our method can be seen as an improvement on the vector
space model method: we give more weight to terms strongly
related with the topic of document. To do this, we look
for other documents that are close in topic to the current
document and count the keywords’ frequencies in the other
documents.

3. SIMILARITY VIA KNOWLEDGE BASE
(SKB)

3.1 Measuring document similarities
The vector space model (VSM) method is a traditional

and basic method used to measure similarities between doc-
uments. It measures the weight of terms based on the num-
ber of times a term occurs in a document (term frequency)
and the number of documents that contain the term (doc-
ument frequency). The VSM method works well when re-
lated documents discuss the same specific topic. When doc-
uments are about the same specific topic, they share many
common terms, so the document similarities calculated by
VSM model become high. However, a person in the web
may appear in different circumstances. Therefore, although
these documents may be about the same general topic, their
specific topics may be different. For example, a computer
scientist may have his publications on several different spe-
cific topics under the same general computer science topic.
In such a case, common terms among documents are very
few. Moreover, information about a people may appear in
only few lines in a web page so the text relates to him is
short. The shortness of relevant texts also makes common
terms being few. When the number of common terms is

few, similarities calculated by VSM are not so effective for
differentiating documents relevant to different people.

We propose a new method to boost the weight of impor-
tant terms in order to measure document similarities when
the number of common terms is small. Suppose that we
have a set of documents that are about topics close to those
of a pair of documents. In the pair of documents, because
of the small number of documents and the shortness of doc-
uments’ length, keywords related with the topic may not
appear more frequently than other words. However, in the
set of documents of the same topic, keywords appear more
frequently than other words. It is reasonable to assume that
keywords in the document pair appear as frequently as they
do in the set of documents if the relevant texts are longer.
Therefore, we use the frequencies of keywords in the set of
documents to modify the frequencies of keywords in the pair
of documents.

This approach requires external sets of documents, so we
prepared some sets of documents on some topics. We call
these sets the knowledge base. Then we used this knowledge
base to find document sets that are close in topic to a pair of
documents and modify their keywords’ term frequencies. We
call our method “Similarity via Knowledge Base” (SKB).

Knowledge base used in our SKB method can be seen as a
kind of training data. In a research of name disambiguation
in citation data[18], the authors used a supervised learning
method. They prepared training documents for every person
in advance and used these documents to train the classifier.
However, this approach is infeasible for people in the web be-
cause preparing training documents for every person in the
web is an impossible task. On the other hand, our approach
of using knowledge base is feasible because we only prepare
documents on several topics. Also, this preparation is easier
because we may use already existing document categories
(e.g web directories) as knowledge base.

3.2 Calculation algorithm
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Figure 2: Measure similarity using a knowledge base

Figure 1 and Figure 2 show the overview of the name
disambiguation system using the knowledge base. It has
three steps as follows.

1. Preprocess documents.

2. Find directories from the knowledge base that are close
in topic to a document and measure weight of terms
using these directories.



3. Measure similarity between a pair of documents using
knowledge base.

3.2.1 Preprocessing
In this step we remove stop words and use the Porter

algorithm[16] to stem words to their root forms. As web
pages are noisy information source, only information around
personal name should be considered as information related
to people. Therefore, we extract only 50 terms in before
and 50 terms after a personal name to create a bag of words
representing that person.

3.2.2 Finding close directories and measuring term
weights

The traditional VSM uses the following formulas to cal-
culate term weights.

tf idf(t, d) = tf(t, d)× log(
N

df
) (1)

Here tf(t, d) is the frequency of term t in the document
d. We use the TREC-Web collection[13] to calculate the
inverse document frequency log( N

df
). N is the number of

documents in the TREC-Web collection.
Suppose that a directory Dir is close in topic to the docu-

ment d. Then the distribution of a topic’s keyword term t in
d and Dir should be similar if d is long enough. Therefore,
the larger a term t’s weight tf idf(t, Dir) is, the larger that
term t’s importance in the document weight(t, d) should be.

We may use tf idf(t, Dir) in place of tf idf(t, d), but we
still want to keep the importance of tf idf(t, d), so we choose
to use the geometric mean: weight(t, d, Dir) ∝p

tf idf(t, d)× tf idf(t, Dir)
We have many directories and we want to make this im-

portance comparable among them, so we normalize this im-
portance by dividing it by the size of each directory. Finally,
we use the following formula to compute terms’ weight.

weight(t, d, Dir) =

s
tf idf(t, d)× tf idf(t, Dir)

length(Dir)
(2)

Formula 2 is used to find directories that are close in topic
to document d. We use the following formula to calculate
similarity between a document d and a directory Dir.

SIM(d, Dir) =
X

t∈d∩Dir

weight(t, d, Dir) (3)

Then we select the top k directories with the highest
SIM(d, Dir) values and call these k directories Dir1, Dir2, ...
Dirk as representative directories. The common terms be-
tween d and Diri are called representative of d via directory
Diri and denoted by Representative(d, Diri).

3.2.3 Measuring document pair similarities
Let a pair of documents to be measured be (d1, d2). For

each directory Dir in the knowledge base, we represent d1, d2

via directory Dir using common terms between documents
and directory: Representative(d1, Dir), Representative(d2,
Dir). The weight of representative terms is calculated using
formula 2. Then, we use the weight of common representa-
tive terms to calculate the similarity between the document
pair (d1, d2) as follows.

SIM(d1, d2, Dir)

=
X

t

weight(t, d1, Dir)× weight(t, d2, Dir) (4)

where t ∈ Representative(d1, Dir)∩Representative(d2, Dir).

SIM(d1, d2) = max
i

SIM(d1, d2, Diri) (5)

3.3 Grouping documents
Suppose we have two document sets, and each set has

only documents related to the same person. If these two
document sets are similar enough to each other, both of
them may be about the same person, so we merge them
together. The similarity between two sets of documents is
calculated as follows.

SIM(C1, C2) =

P
di∈C1 ,dj∈C2

SIM(di, dj)

|C1| × |C2| (6)

At the initial step each document itself forms a singleton
cluster. Then we consecutively merge the closest cluster pair
until the number of clusters is small enough. The details of
clustering algorithm are as follows.

Procedure ClusterDocument()
1: At initial status, each document forms a singleton cluster
2: Calculate similarity between all clusters
3: while (number of clusters > Nthreshold) do
4: Find the pair of clusters (C1, C2) with

the maximum similarity
5: Merge C1, C2 to form a new cluster Cnew

6: Update similarity between Cnew and other clusters Ci

7: end while
8: return a set of clusters

Here Nthreshold is tuned using a training data set.

4. EXPERIMENT

4.1 Baseline methods
We chose two methods to compare with our method as

baseline methods: the vector space model (VSM) method
and the named entity recognition (NER) method.

4.1.1 Vector space model method
In the VSM method, we do preprocessing same as prepro-

cessing in our SKB method: we remove stop words and se-
lect 50 words before and 50 words after each personal query
name. Using this bag of words we construct a document vec-
tor whose constituents are tf idf(t, d) values of all words in
the bag calculated using equation 1. We use the inner vector
product of document vectors as the similarity measurement
of document pairs.

4.1.2 Named entity recognition method
In[12], the authors use named entities recognition (NER)

method for the measurement of document similarities. We
use the LingPipe software[4] (a named entity extraction tool)
to extract named entities inside a document and build a
document vector using these named entities. Constituents
of vector are binary value (1 if a named entity appear in the
document, 0 otherwise). The inner vector product between
document vectors is used for similarity measurement.



Table 1: Data sets
Field Name

Computer Adachi Jun, Sakai Shuichi
science Tanaka Katsumi, John D. Lafferty

Tom M. Mitchell, Andrew McCallum
Paul G. Hewitt, Edwin F. Taylor

Physics Frank Bridge, Kenneth W. Ford
Paul W. Zitzewitz, Michael A. Dubson
Scott Hammer, Thomas F. Patterson

Medicine Henry F. Chambers, David C. Hooper
Michele L. Pearson, Lindsay E. Nicolle
John M. Roberts, David Reynolds

History Thomas A. Brady, William L. Cleveland
Thomas E. Woods, Peter Haugen

4.2 Data sets

4.2.1 Knowledge base directories
We chose directories in dmoz.org [5] for knowledge base

directories. We chose 56 specific directories from various
general topics including art, business, computer, games, his-
tory, home, news, recreation, science, shopping, society and
sports. Each directory contained about 40 to 50 documents.

4.2.2 Test sets
We got from the Google search engine [6] documents of re-

searchers in four fields: computer science, physics, medicine
and history. In each research field we chose six people as
shown in table 1.

For each person we selected top 100 documents from the
searching results. After removing the non-html documents,
each collection had about 75 to 90 documents, among them
about 20 to 60 documents were documents related to the
same person.

We divided 24 collections into two sets: a training set and
a test set. The training set has 16 collections (4 collections
per each field × 4 fields) and the test set has eight collec-
tions (2 collections per each field × 4 fields). In each set,
we created pseudo namesake data by mixing together two
collections: two each from two people in different research
fields. This yielded 4× 4× `4

2

´
= 96 pseudo namesake data

for the training set and 2 × 2 × `4
2

´
= 24 pseudo namesake

data for the test set. The training set is for tuning the num-
ber of clusters and the test set is for verifying and comparing
the performance of each method.

4.3 Evaluation of clustering performance
We evaluate the performance of the clustering results as

follows. From the clustering results, we first remove clusters
whose size is less than or equal to three. For each remaining
cluster, we choose the person who has the largest number
of documents in the cluster and label all documents in the
cluster with the label of that person. Then we calculate
the precision (P ), recall (R) of labeled documents using the
following equations. We also calculate the harmonic mean
(Fmeasure) of P and R.

P =
Number of documents correctly labeled

Number of documents labeled
(7)

R =
Number of documents correctly labeled

Number of documents should be labeled
(8)

Fmeasure =
2PR

P + R
(9)

4.4 Experimental results

4.4.1 Performances of methods
We varied the stopping condition of the clustering algo-

rithm (i.e. the number of clusters) and measure the values
P, R, and Fmeasure. Figure 3,4, and 5 show the results for
three methods: VSM, NER, and SKB, respectively. Fig-
ure 6 shows a comparison of the three methods in terms of
F measure value. We also counted the number of remaining
large clusters (clusters with size larger than 3) for all sets
and took the average (Figure 7).
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Figure 3: Performance of VSM method
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Figure 4: Performance of NER method
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Figure 5: Performance of SKB method

4.4.2 Tuning the number of clusters
We used the training set to find the best number of clus-

ters for the stopping condition of the clustering algorithm.
The results are 71, 60, and 63, for VSM, NER, and SKB,
respectively. At these thresholds, VSM, NER, and SKB
achieved the F measure values of 53.3%, 52.9%, and 57.2%.
We applied these number of clusters for the stopping con-
dition of the clustering algorithm in the testing experiment.
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Table 2 shows the performance of the training and test sets
in terms of Fmeasure value.

4.5 Discussion

4.5.1 Comparison among methods
As we can see from Figures 3,4,5, and 6, the best Fmeasure

value of SKB is 57.2%, which is better than the Fmeasure val-
ues of VSM (53.3%) and NER (52.9%). In the test set, the
SKB also outperformed VSM and NER in term of Fmeasure:
SKB achieved a value of 52.8%, compared with 45.1% of
VSM and 49.6% of NER. We also investigated the number
of large clusters in the result. As shown in the Figure 7, the
number of large clusters for each method varies in the range
from 3 to 7 when the numbers of all clusters are around
Nthreshold, which is suitable for practical use.

4.5.2 Computation complexity
Let n and M be the number of documents and the num-

ber of directories, respectively. In the VSM method, we
have to calculate similarity between every document pair.
Therefore, the computation complexity of the VSM method
is O(n2). In our SKB method, we have to calculate simi-
larity between every document pair using 2k top directories
and have to calculate similarity between every document
and every directory. Therefore, the computation complex-
ity of the SKB method is O(2k×n2 + M ×n). As k and M
are constants, the computation complexity is O(n2). This
complexity is of the same order as the VSM method, but
it is more expensive than the VSM method by a constant
factor.

Table 2: Tuning parameters and testing results
Method Nthreshold Training Test

set set
VSM 71 53.3% 45.1%
NER 60 52.9% 49.6%
SKB 63 57.2% 52.8%

5. CONCLUSION
In this research we focused on the problem of personal

name disambiguation in web search results. To solve this
problem, we have proposed a new method to measure the
similarities between documents: similarity via knowledge
base (SKB). Our method uses a knowledge base to find out
topic words, which are important keywords in documents, in
order to find out shared contexts of documents and to more
easily calculate the weight of the shared contexts. Then,
we use these similarity results for the agglomerative cluster-
ing to group related documents together. Our SKB method
performed better than two traditional methods: the vector
space model (VSM) method and the named entity recog-
niton (NER) method. In the future, we will use our SKB
method in cooperation with other clustering techniques to
improve the grouping performance. We will also try to re-
duce the calculation complexity induced by using a knowl-
edge base.
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