
Real-Time Traffic Incident Detection Using Probe-Car Data
on the Tokyo Metropolitan Expressway

Akira Kinoshita
The University of Tokyo

Tokyo, Japan
kinoshita@nii.ac.jp

Atsuhiro Takasu and Jun Adachi
National Institute of Informatics

Tokyo, Japan
{takasu, adachi}@nii.ac.jp

©2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works. This is the accepted version of the following article: Akira Kinoshita, Atsuhiro
Takasu, and Jun Adachi. Real-time traffic incident detection using probe-car data on the Tokyo Metropolitan Expressway. In 2014 IEEE International
Conference on Big Data, pp. 43–45, Washington, D.C., USA, October 27–30, 2014. DOI: 10.1109/BigData.2014.7004488

Abstract—We have developed a real-time traffic incident
detection system for the Tokyo Metropolitan Expressway. This
system monitors current traffic using probe-car data and
compares actual traffic in real time with the usual traffic, which
is estimated in advance using batch processing.

Keywords-anomaly detection; automatic incident detection;
probe-car data; real data; real-time system;

I. INTRODUCTION

Real-time automatic incident detection (AID) is crucial
in solving traffic incidents early and reducing congestion.
Probe-car data (PCD) are becoming increasingly important
as the number of probe cars and the size of the data archives
increase. With real-time PCD processing, early AID can be
achieved for a vast area at a low cost.

In this paper, we develop a real-time traffic incident detec-
tion system that covers the whole of the Tokyo Metropolitan
Expressway (MEX). The total length of MEX is about
300 km and the average daily traffic is about one million
vehicles. Although the MEX forms the arteries of the Tokyo
area, there are many bottlenecks, such as curves, and the
speed limit is 60 km/h for the greater part of the routes.
Traffic congestion is quite common there, and is not always
caused by traffic incidents. In our previous paper [1], we
proposed a method to detect incidents that we would regard
as sudden and unusual traffic events by comparing between
usual and current traffic states. This paper describes the
design and implementation of the proposed system, which
can apply our algorithm to the PCD stream in real time.

II. DETECTION METHODOLOGY

This section describes our incident-detection method,
which we proposed in our previous paper [1] and modified to
work in a real-time application. Our approach is to compare
the usual and current traffic states to find traffic incidents,
i.e., sudden and unusual traffic events. We first give a brief
description of the traffic state model from our previous paper
[1] that describes traffic states for a variety of roads. Then we
describe our incident detection method based on the model,
which issues an alert when a car’s behavior is estimated to
be sufficiently different from usual.

A. Traffic State Model

Intuitively, we can identify traffic states as “smooth” or
“congested” regardless of location. Vehicles travel fast in
smooth states and behave in a stop-and-go fashion in heavily
congested states. When observing the speed of a probe car,
the value is likely to be small if the car is in “congested
traffic,” or large if the traffic is “smooth.” In short, the
behavior of a car is affected by the surrounding traffic state
and the observed values for the probe car will change,
whereas the traffic state is latent and varies according to
the time and place. We use a probabilistic topic model [2]
to model this relation between traffic states and the PCD.

A traffic state can be associated with a probability dis-
tribution, which generates an observation value, e.g., speed.
On the other hand, traffic states are strongly related to roads,
so we introduce the segment as the unit for observing traffic.
A segment is defined as a certain section on a route during a
certain time period. Let K be the number of states, with the
kth traffic state corresponding to the parameter θk. The prob-
ability distribution for the sth segment is described in terms
of a mixture of these K distributions. The state parameters
{θ1, · · · ,θK} are identical for all segments, but the mixing
coefficient is different for each segment. The maximum-
likelihood parameters of the model are estimated by an
expectation-maximization (EM) algorithm, using archived
PCD as training data.

B. Incident Detection

Our AID method measures the degree of anomaly for
each probe car’s trajectory. Figure 1 shows our concept to

segment
PCD
σ(s, x)

σ(s)

route

G:Good, M:Moderate, S:Stop

-
1

G

2
x1

G

G

3
x2

G

G

4
x3

M

G

5
x4

S

G

6
x5

S

M

7
x6

S

S

8
x7

G

G

9

G

6?

Figure 1. Concept of our incident detection method, which compares the
usual and current traffic states.

http://dx.doi.org/10.1109/BigData.2014.7004488


Raw PCD 
stream	PCD 

Server	
Map 

matching	
Trajectory 

identification	 Interpolation	

Preprocessor	

Traffic State 
Learner 
(batch)	

Current traffic 
state estimation	

Parameter 
fetching	

Divergence 
lookup	

Incident Detector	

GeoDB	

PCD-DB	
Preprocessed PCD stream	

Estimated traffic state model	

Monitoring 
Sliding 

Windows	

Query 
Server	

Client	
Query	

Abnormal 
segments	

Figure 2. Architecture of our real-time traffic incident detection system.

detect incidents by comparing the usual traffic states with
the current ones. Assume a probe car travels along a route
and observes values for each segment that it passes through.

We first define the current traffic state when the value x
was observed in the sth segment, denoted by σ(s, x), as the
most probable state given x. Using the posterior distribution
with Bayes’ theorem, σ(s, x) is estimated as:

σ(s, x) = arg max
k

{πskp(x|θk)} , (1)

where πsk is the mixing coefficient of the kth state in the
sth segment. Meanwhile, the learned model itself reflects
the usual state over the whole observation period, because
the parameters are estimated to fit the distribution in the
dataset. We can therefore define the usual traffic state for
the sth segment, denoted by σ(s), as the most probable state:

σ(s) = arg max
k

πsk. (2)

We now introduce the divergence of σ(s, x) from σ(s),
denoted by d(s, x), to quantify the difference between the
two states. Because in our model each state is associated
with a probability distribution, we measure this difference
in terms of the Kullback–Leibler divergence of the current
state’s distribution from the usual state’s distribution. Finally,
we define the divergence of a probe car’s trajectory, denoted
by D, as the summation of all the divergences d(s, x) that
were calculated using the car’s observation values. The more
a car deviates from its usual behavior, the larger D will be.
A probe car’s trajectory is determined as anomalous when D
is sufficiently large, i.e., larger than a predefined threshold.

The D defined above will continue to increase as long as
the car runs, and any car would eventually be determined
as being anomalous. Therefore, in this paper, we redefine D

as the sum of the N most recent divergences d(s, x). If the
car passes through fewer than N segments, the redefined
D is equivalent to the original. This change allows the
divergences of a probe car to be managed by a sliding
window, i.e., a queue.

III. SYSTEM ARCHITECTURE AND IMPLEMENTATION

Figure 2 shows the architecture of the proposed system,
which applies our detection algorithm to the PCD in real
time. Our system first preprocesses the raw PCD stream in
three phases: map matching, trajectory identification, and
interpolation. Map matching is a process to determine the
segment that the probe car was in from the reported time
and position. To reduce latency, our system conducts map
matching in the simplest way: a probe car’s observation is
matched with the segment nearest to the car’s location. We
used PostGIS [3] to process this nearest-neighbor query.
After map matching, the trajectory corresponding to the
probe car’s observation is identified, and linear interpolation
is used to form an observation sequence of the consecutive
segments through which the probe car passes. For this
procedure, the preprocessor uses a hash table to store the
last observation value for each trajectory. The output of the
preprocessor is a stream of 4-tuples (trajectory ID, segment
ID, time, speed), which are stored in a database.

Our detection algorithm is applied to the preprocessed
PCD. The “Traffic State Learner” in the left part of Figure
2 is a batch processor that applies an EM algorithm to
the stored PCD periodically, to estimate the parameters of
our traffic state model. We implemented it using OpenMP
[4] for multiprocessing. The “Incident Detector” applies our
incident detection algorithm and it is implemented so that the
data are processed in real time. It first obtains the estimated



Figure 3. Screenshot of the monitoring screen showing the result of our
real-time incident detection system. The red lines on the OpenStreetMap
[5] indicate the segments with high divergence.

traffic state model and holds a hash table to find model
parameters for each segment, and a lookup table to find
divergences between any pair of traffic states. The detector
also receives the preprocessed PCD stream. When a PCD
instance arrives, the detector first fetches model parameters
from the hash table and estimates the current traffic state.
Then it fetches the divergence between the usual and current
traffic states from the lookup table. Finally, the detector
sends the divergence to “Monitoring Sliding Windows,”
which uses a hash table to access sliding windows, each of
which holds recent divergence values of a trajectory. When
a client issues a query to obtain abnormal segments, the
“Query Server” reads the “Monitoring Sliding Windows”
data and provides any detected segments.

We implemented a monitoring screen using OpenLayers 3
[6] to display the high-divergence segments on a map, as
shown in the screenshot in Figure 3. The red line in the
middle of the figure indicates that the estimated divergence
of the segments between the Edobashi Junction and the
Takebashi Junction on the inner loop (counterclockwise)
of the Inner Circular Route was high. Traffic congestion
occurred at that time and a probe car ran at unusually
slow speed, so our system estimated the divergence to be
high. According to the traffic log made available by the
administrator of the MEX, this congestion was actually
caused by a traffic accident.

IV. DISCUSSION

Our prototype system runs with static parameters at
present. The parameters include the lengths of road
segments, the number of traffic states K, and the length of
the sliding window N . However, they should be updated

adaptively for a real-time application because the optimal
parameter values might vary according to the traffic. We
will introduce parameter-tuning functions to improve the
detection accuracy in the next phase.

We also plan to apply our system to a larger road network.
Reducing memory usage of the system is considered vital
to achieve scalability. The “Incident Detector” uses memory
to hold a hash table and a divergence lookup table. The size
of the hash table is proportional to the number of segments
and K, and the size of the lookup table is K ×K. As we
found in our previous paper [1], K is a rather small number,
e.g., eight. Therefore, the memory usage is approximately
proportional to the number of segments. The current system
partitions the MEX routes to constant-length segments, but
the number of segments can be reduced by varying their
lengths according to the location and traffic while preserv-
ing the detection accuracy. Improving throughput for each
process is also vital, and the performance of the system is
under study.

V. CONCLUSION

We have developed a real-time traffic incident detection
system that covers the whole of the Tokyo Metropolitan
Expressway. This system processes probe-car data streams to
apply our detection algorithm [1] in real time. Future work
is under way to update parameters adaptively and to reduce
memory usage of the system so that the system will work
more efficiently in real time and for larger road networks.

ACKNOWLEDGMENT

This work was supported by CPS-IIP Project in the
research promotion program for national-level challenges
“Research and development for the realization of next-
generation IT platforms” by the Ministry of Education,
Culture, Sports, Science and Technology, Japan. The traffic
log used in our experiment as the ground truth for incident
occurrence was made available by Metropolitan Expressway
Co., Ltd.

REFERENCES

[1] A. Kinoshita, A. Takasu, and J. Adachi, “Traffic incident
detection using probabilistic topic model,” in Proc. Work.
EDBT/ICDT 2014 Jt. Conf., 2014, pp. 323–330.

[2] D. M. Blei, “Probabilistic topic models,” Commun. ACM,
vol. 55, no. 4, pp. 77–84, Apr. 2012.

[3] PostGIS, http://postgis.net/.

[4] OpenMP, http://openmp.org/wp/.

[5] OpenStreetMap, http://www.openstreetmap.org/.

[6] OpenLayers 3, http://openlayers.org/.

http://postgis.net/
http://openmp.org/wp/
http://www.openstreetmap.org/
http://openlayers.org/

	Introduction
	Detection Methodology
	Traffic State Model
	Incident Detection

	System Architecture and Implementation
	Discussion
	Conclusion
	References

