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Abstract. Because vehicular traffic is affected by weather conditions,
knowledge of the relationship between weather and traffic enables at-
tempts to improve social services through applications such as situation-
aware anomaly vehicle detection and snow-removal planning in snowy
countries. We propose a weather-aware traffic state model for vehicu-
lar traffic analysis in consideration of weather conditions. The model is
a probabilistic latent variable model that integrates weather and traf-
fic data, whereby the characteristics of the traffic according to location,
time, and weather condition are obtained automatically. After we ob-
serve both weather and travel times along road segments, we derive
the expectation–maximization algorithm for model parameter estima-
tion and the predictive distribution of travel time given the weather
observation values. We evaluated the model qualitatively and quanti-
tatively using winter traffic and weather data for the city of Sapporo,
Japan, which is a large city that suffers heavy snowfalls. The empirical
analysis with model visualization outcomes demonstrated the relation-
ship between the expected vehicular speed and weather conditions, and
showed the potential bottleneck segments for given weather conditions.
The quantitative evaluation showed that our model fits the data better
than a linear regression model, which suggests the potential for anomaly
detection from vehicular observation data.

Keywords: Data integration · Data mining · Latent variable models ·
Probe-car data · Social cyber–physical systems · Weather-aware traffic
state analysis

1 Introduction

Real-world traffic is complex and involves various factors. One important factor is
the weather conditions. These change the driving environment, including visibil-
ity and road surface conditions, which affects the movement of vehicles in terms
of running speed, vehicular gaps, and so on. Bad weather also affects the behavior
of people: they may change their destination or visiting order, or avoid traveling
at all, which affects the traffic volume and travel route. Knowledge of the rela-
tionship between weather and traffic enables attempts to improve social services.

http://dx.doi.org/10.1007/978-3-319-68282-2_4
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For example, if the roads and intersections in which heavy snow often hinders the
traffic are known, effective road improvement and snow-removal planning will be
available. Situation-aware detection of anomalies in vehicle movements will also
be possible with such knowledge and the awareness of the current condition. This
approach also promises to provide finer-grained traffic information than existing
approaches: for instance, that traffic is congested because the average speed has
fallen below a prescribed value.

The relationship between weather and vehicular traffic has been studied over
decades. Traffic engineers studied the effect of weather on freeway traffic in
1988 [5]. Keay and Simmonds analyzed the relationship between rainfall and
traffic volume in Melbourne, Australia, using a linear regression method [7]. Re-
cent studies also utilized linear regression techniques but they are application-
oriented. Lee et al. developed a linear regression model to predict traffic conges-
tion using weather data [9]. Tanimura et al. also used a linear regression model
to predict the reductions in vehicle speeds in snowy conditions [11]. Xu et al.
predicted traffic flows based on weather data using an artificial neural network
as well as a linear regression method [13]. These studies model the relationship
between weather and traffic in terms of traffic statistics or aggregated values.
However, they do not model the relationship between weather and the behavior
of individual vehicles.

The movement of a vehicle differs substantially among individuals. In par-
ticular, on ordinary roads, the speeds of vehicles vary greatly because they fre-
quently slow down for intersections, traffic lights, and pedestrians. Therefore, in
this paper, we model the traffic by probabilistic means. With the probabilistic
distribution of the traffic observation values, such as travel time at a certain loca-
tion over a selected period, the degree of anomaly of the observed behavior of an
individual vehicle can be evaluated quantitatively. Statistics such as mean travel
time and average speed can also be calculated based on the distribution. Earlier
studies proposed several probabilistic distribution models [2,4,14]; however, they
have not considered the weather conditions.

In this paper, we develop a weather-aware traffic state model (WATS model),
a probabilistic model of observed values for traffic with consideration of weather
conditions. Our probabilistic model aims at learning the “normal” patterns of
traffic using data archives, which would be used for the applications described
above, i.e., traffic incident detection and snow-removal planning. We have pre-
viously proposed a latent variable model for traffic state, and have shown its
effectiveness for incident detection on expressways [8]. This model introduced
latent traffic states such as “smooth” and “congested,” and assumed the traffic
observation values depend on the latent states. This paper extends the model by
introducing variables related to weather conditions and relationships among the
variables. The WATS model assumes not only that the traffic observation value
depends on latent traffic states, but also that the traffic state depends on the
weather. We introduce weather states to relate the traffic data to the weather
data observed at the same time of day, thus allowing the relationship between
weather and traffic to be learned. We borrow the idea of a Pachinko allocation
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model [10], which is a latent variable model that analyzes topics in textual infor-
mation by considering correlations among latent information, to realize a feasible
model for the problem.

We also aim to apply the WATS model to ordinary roads as well as ex-
pressways. In this study, we conducted an experiment in the city of Sapporo,
Hokkaido, Japan. Sapporo is the metropolis of Hokkaido prefecture, and the
fourth largest city in Japan in terms of population. While more than 1.9 M
people live there, the city is located in a heavy snowfall region. The city spent
more than 18 billion yen (about $US 150 M) on plans to counter snow in the
2015 fiscal year, with more than three quarters of the budget devoted to snow
removal [3]. It is important to enhance cost effectiveness while reducing the bad
influence of snow on traffic. Against this background, we attempted an empirical
analysis on the weather–traffic relationship in Sapporo in winter. The visualized
results of the WATS model indicate that it is possible to find bottlenecks that
change according to weather and time. Our quantitative evaluation showed that
the model fits the data better than an existing weather–traffic model, suggesting
the potential for incident detection.

The main contributions of this paper are as follows.

– We propose a weather-aware traffic state (WATS) model. It is a new proba-
bilistic latent variable model that integrates weather and traffic data, deriv-
ing the characteristics of the traffic according to location, time, and weather
condition automatically.

– We show the effectiveness and the potential of the WATS model by our
empirical qualitative and quantitative evaluations. The evaluation was con-
ducted in the city of Sapporo, located in Japan’s snow country.

The rest of this paper is organized as follows. In Section 2, we propose the
WATS model. Section 3 reports the result of our empirical experiment and dis-
cusses the results, issues and future work. Finally, Section 4 concludes the paper.

2 Weather-Aware Traffic State Model

In this section, we present our WATS model. The aim of our model is to integrate
observation data, traffic conditions, and weather conditions, so that the relation-
ship between weather and vehicular traffic can be analyzed. Table 1 summarizes
the notation used in this paper.

2.1 Model Design Concepts

We use two kinds of data:

– weather observation data, which are obtained periodically (e.g., hourly),

– traffic observation data, which are obtained intermittently or continuously.
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Table 1: Notation
Notation Definition

s Road segment.
ds Length of road segment s.
S Number of road segments.
t Time.
T Number of weather observation data.
n Index of traffic observation data.
Nts Number of traffic observation data in segment s in time t.
w Weather observation data.
D Dimension of w.
x Traffic observation data.

µ, Λ Mean and precision, respectively, of w.
λ Mean travel speed.
l, k Index of latent states.
L, K Number of latent weather and traffic states, respectively.
π Mixing coefficient of weather states.
v Latent weather state.

y, z Latent weather and traffic state, respectively.
θ Mixing coefficient of traffic states.
Θ Set of parameters: (π,θ,µ,Λ, λ).
η All hyperparameters: (α,β, a, b,µ0, γ,W , ν).

Here we develop a latent variable model, whereby weather-aware traffic perfor-
mance is described in terms of a probability distribution.

Weather observation data indicate the weather conditions in the subject area.
At time t, only one weather observation data point w is obtained. The observa-
tion value is numerical and we assume w follows a Gaussian distribution with
mean µ and precision (i.e., the inverse of the covariance matrix) Λ. The mean
and covariance can change according to weather conditions. For example, tem-
perature tends to be low and snowfall tends to be large in “snowy” conditions,
and temperature tends to be high and snowfall tends to be zero in “sunny” con-
ditions. We introduce L weather states, each of which is characterized by the
mean µl and the precision Λl. Then the probability distribution of the weather
observation at time t is described in terms of a mixture of these components:

p(wt | Θ) =

L∑
l=1

πtlN (wt | µl,Λl
−1), (1)

where πt is the mixing coefficient vector at time t. πtl is equivalent to the prob-
ability of being in the l-th weather state at time t. The mixing coefficient varies
according to the time t while each of L component Gaussians is identical over
time. Therefore, πt characterizes the weather condition at time t.

Intuitively, we can identify traffic states as being “smooth” or “congested,”
regardless of location, and the traffic state information is strongly related to
geographical and time-of-day conditions [8]. Therefore, traffic observations are
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conducted for each segment s, which is the unit for traffic observation and is
specified by road segment, direction, and time period, such as “morning” or
“evening.” At time t, Nts traffic observation data points are obtained from seg-
ment s.

There are several options for traffic observation values, e.g., travel time and
average speed. In this paper, we use travel time as the traffic observation value
x. Travel time can be measured directly using probe cars [12]. The travel time
depends on both the length of the road segment and traffic condition, and we
model the relationship among them. Although several models have been pro-
posed for travel time distribution [2,4], they are too complicated to incorporate
into our model or they need additional features for estimation. Intuitively, traffic
conditions can be characterized by the average speed λ: the traffic is “smooth” if
λ is large, and “congested” if λ is small. We therefore introduce K traffic states
with different average speeds {λk} and the gamma distribution Gamma(ds, λk),
where ds is the road length of the segment s. This distribution makes sense with
the assumption of a Poisson process: considering the event that a vehicle goes
forward a unit length, the rate λ, or average number of times the event occurs,
is equivalent to the average speed, and the total time required for k occurrences
of the event is equivalent to the travel time on a road of length k and follows
an Erlang distribution. The gamma distribution is the generalized form of the
Erlang distribution by allowing k to be a positive real number rather than a
positive integer. Note that we use the notation Gamma(ds, λk) in this paper for
the gamma distribution with the following probability density function:

Gamma(x | ds, λk) =
λds

k xds−1 exp(−λkx)

Γ(ds)
, (2)

where Γ(z) is the gamma function.

Traffic conditions vary according to the time and place and depend on the
“condition” there, e.g., road shape and congestion occurrence. The condition
can also change according to the weather even at a particular place. For ex-
ample, traffic congestion may occur when it snows. There seems to be a hier-
archical property: traffic observations depend on the traffic conditions, and the
traffic conditions depend on the weather conditions. In this study, we model
the relationship as a latent variable model, borrowing the idea of the Pachinko
allocation model (PAM) [10]. PAM was proposed to analyze topics in textual
information with consideration of correlations among latent information. It in-
troduces a hierarchical structure among latent variables: word occurrence in a
document depends on its topic and the topic depends on the supertopic. In our
WATS model, the traffic observation value depends on the traffic state and the
traffic state depends on the weather state. The probability distribution of the
traffic observation value is described in terms of a hierarchical mixture:

p(xtsn | Θ) =

L∑
l=1

πtl

K∑
k=1

θslkGamma(xtsn | ds, λk), (3)
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Fig. 1: Graphical model for the WATS model.

where θsl is the mixing coefficient vector, the k-th element of which is equivalent
to the probability of being in the k-th traffic state in segment s in the l-th
weather state. Each of K component gamma distributions is identical regardless
of the segment and the weather state. Therefore, θsl characterizes the traffic
performance for each road segment and for each weather state.

2.2 Generative Model

Figure 1 shows the graphical model for the WATS model. The upper part gen-
erates the weather observation data wt while the lower part generates the traffic
observation data xtsn. The two kinds of data in the same time t are associated
with each other by the parameter πt. The generative process is as follows:

1. Generate parameters:
(a) Generate the mean speed λk ∼ Gamma(a, b) for each of K traffic states;
(b) Generate the pair of the mean vector and the precision matrix of the

weather observation values (µl,Λl) ∼ Gauss–Wishart(µ0, γ,W , ν) for
each of L weather states;

(c) Generate the mixing coefficient θsl ∼ Dirichlet(βl) for each segment s
and for each weather state l;

2. Generate the data at time t:
(a) Generate a mixing coefficient πt ∼ Dirichlet(α);
(b) Generate weather observation data:

i. Generate the weather state vt ∼ Multinomial(πt);
ii. Generate the weather observation vector wt ∼ N (µl,Λl

−1), where
vt = l.

(c) Generate the nth traffic observation data for each segment s:
i. Generate ytsn ∼ Multinomial(πt);
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ii. Generate ztsn ∼ Multinomial(θsl), where ytsn = l;
iii. Generate xtsn ∼ Gamma(ds, λk), where ztsn = k.

According to the generative process above, the log-likelihood is derived as follows:∑
t

ln
∑
l

πtlN (wt | µl,Λl
−1) +

∑
t,s,n

ln
∑
l,k

πtlθslkGamma(xtsn | ds, λk). (4)

2.3 Model Estimation

Maximum-likelihood (ML) estimations or maximum a posteriori (MAP) esti-
mations for latent variable models generally use the expectation–maximization
(EM) algorithm [1]. The EM algorithm iterates E- and M-steps alternately until
the log-likelihood converges. We show the update formulas for our WATS model;
they can be derived by considering some conditional probabilities based on the
graphical model, but the mathematical details of the derivation are are omitted
here because of space limitations.

The E-step calculates the posteriors:

ζtl ≡ p(vt = l | wt,Θ) ∝ πtlN (wt | µl,Λl
−1), (5)

ξtsnlk ≡ p(ytsn = l, ztsn = k | xtsn,Θ) ∝ πtlθslkGamma(xtsn | ds, λk). (6)

The M-step maximizes the following Q function for the ML estimation, or the
Q̃ function for the MAP estimation:

Q =
∑
t,l

ζtl
[
lnN (wt | µl,Λl

−1) + lnπtl

]
+

∑
t,s,n,l,k

ξtsnlk [lnGamma(xtsn | ds, λk) + ln θslk + lnπtl] , (7)

Q̃ = Q+ ln p(Θ). (8)

This Q or Q̃ is maximized by introducing Lagrange multipliers and setting its
partial derivatives with respect to each parameter to zero. The update formulas
for MAP estimation are derived as follows:

πtl ∝ ζtl +
∑
s,n,k

ξtsnlk + αl − 1, θslk ∝
∑
t,n

ξtsnlk + βlk − 1, (9)

λk =

∑
t,s,n,l ξtsnlkds + a− 1∑
t,s,n,l ξtsnlkxtsn + b

, µl =

∑
t ζtlwt + γµ0∑

t ζtl + γ
, (10)

Λl
−1 =

∑
t ζtl(wt − µl)(wt − µl)

T + γ(µl − µ0)(µl − µ0)
T +W−1∑

t ζtl + ν −D
. (11)

πtl and θslk should be normalized so that
∑

l πtl = 1 and
∑

k θslk = 1 respec-
tively. As for the ML estimation, constant terms (i.e., terms that do not include
ζtl or ξtsnlk) are simply eliminated.
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2.4 Prediction

Once the model parameter Θ is estimated, we can calculate the predictive dis-
tribution of travel time x in the segment s as the conditional probability given
a weather observation vector w. Based on the graphical model, the predictive
distribution is derived as follows:

p(x | w, s,Θ) =
∑
k

ωkGamma(x | ds, λk), (12)

where

ωk ≡
∑

l θslkαl

(
q(w) +N (w | µl,Λl

−1)
)

(
∑

l αl + 1) q(w)
, (13)

q(w) ≡
∑
l

αlN (w | µl,Λl
−1). (14)

Therefore, the predicted travel time follows a gamma mixture distribution. The
expected travel time is obtained as follows:

E[x | w, s,Θ] =
∑
k

ωk
ds
λk

. (15)

The predictive distribution and the expected value above include the hy-
perparameter α in the formulas. It is given in the MAP estimation, but it is
not given in the ML estimation. According to Equations (7) and (8), the ML
estimation can be regarded as a MAP estimation that assumes that the prior
p(Θ) is uniform, i.e., constant. α is the parameter of a Dirichlet distribution,
which is equivalent to a uniform distribution when α = 1, i.e., αl = 1 for all l.
Therefore, we propose to use α = 1 for prediction with the estimated value of
ML estimation.

3 Experiment

We have conducted an empirical winter traffic analysis in the city of Sapporo by
applying the WATS model to real weather and traffic data. This section reports
and discusses the experimental results.

3.1 Data set

Figure 2 shows the subject area, a part of Sapporo, Hokkaido, Japan. Snow falls
in Sapporo from the end of October to April and the snow depth reaches about
one meter in midwinter every year. Surface weather such as temperature and
precipitation is observed at about 1300 stations in Japan using the Automated
Meteorological Data Acquisition System (AMeDAS) developed and operated
by the Japan Meteorological Agency [6]. In this experiment, we used weather
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Sapporo sta.	

AMeDAS	

Tokyo	
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Fig. 2: Map of Sapporo, Hokkaido, Japan. The red-line polygon shows the subject
area. The Sapporo AMeDAS station is also shown. Map tiles ©OpenStreetMap
contributors, CC BY-SA 2.0.

observation data from Sapporo AMeDAS station and traffic data within the
region shown in Figure 2; the nearest AMeDAS station is Sapporo.

We obtained probe-car data in Sapporo city, and then we preprocessed them
to generate traffic data for each road segment. The original probe-car data in-
clude trajectory information, i.e., a sequence of time–location data points for
each active probe car. The preprocess had five phases: we defined segments ac-
cording to the road segments and time period; map matching was conducted to
associate a vehicular location with a road segment; trajectory data were inter-
polated linearly so that the time when the vehicle entered or exited the segment
was determined; and the travel time for each segment was observed. As men-
tioned previously, each segment was determined by road segment, direction, and
time period. Our road segments follow the main road segment data in a com-
mercial digital road map. They are divided by day (weekday or holiday) and by
time period: morning rush hour (7–10 h), daytime (10–17 h), evening rush hour
(17–20 h), and night (20–7 h on the following day). For the weather observation
data, we used hourly data at Sapporo AMeDAS station, including temperature
[◦C], snowfall [cm/h], snow depth [cm], and precipitation [mm/h].

We obtained weather and traffic data from January 2010 to February 2015,
but we used only winter data from October to April of each year. We used data
in or before April 2014 for model training, and that in and after October 2014
for testing. We removed noisy segments that have less than 1000 training data
points from the data set. The final training data include 31,891 segments and
74,826,640 traffic observations.
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3.2 Parameter Estimation

We first trained the WATS model using the training data. In this experiment,
we conducted ML estimation. We assumed eight weather states and 16 traffic
states, but we did not assume any other parameter values such as mean speed
or mean temperature, which were estimated from the training data.

We implemented the EM algorithm described in the previous section using
OpenMP for multiprocessing. The EM algorithm required about 13 minutes
using parallel processing with 36 CPU cores. Table 2 and 3 show the estimated
parameter values. The eight estimated weather states include snowy conditions
(l =1,2,4), warm conditions (7,8), and snow-accumulated conditions (1–6). The
mean speed of the traffic states extends over a wide range from “almost stopped”
to “very fast.” The estimated mean speed for the 16th traffic state was quite
fast; this seems to be caused by outliers in the training data, which were possibly
caused by map-matching failures. However, these would be insignificant in this
experiment because the estimated mixing coefficient value for the 16th traffic
state was zero or almost zero for almost all segments; that is, the 16th traffic
state was ignored automatically.

We visualized the estimated model as shown in Figure 3 for a qualitative
analysis. Because of space limitations, the figure shows the estimated model
only for the morning rush hour on weekdays. The color of a segment indicates
the expected values of average link speeds; their probability densities were ob-
tained by the transformation of random variables using the estimated travel time
distribution and the road length. The map tends to be red as the weather states
become warmer with less snow, but the map of the 6th state is exceptional be-
cause it is almost blue. This suggests that the traffic tends to slow down almost
everywhere when the temperature is nearly zero degrees and there is snow ac-
cumulation. Vehicles can be expected to slow down in such weather conditions
because the accumulated snow melts and freezes at around zero degrees and
makes the road surface condition very poor. On the other hand, some road links
keep the mean travel speed over different weather states at a slow value. We
speculate that the reason is queueing and waiting for traffic lights regardless of
weather.

3.3 Model Evaluation

We evaluated two quantitative metrics: prediction error of the expected travel
time and the cross entropy. For comparison, we also trained linear regression
models for each segment as the baseline.

Expected Travel Time Prediction With the estimated model, we calculated
the expected travel time for each road segment every hour. We used ML estima-
tion in this experiment, so the expected value was given by Equation (15) with
α = 1 as we described in the previous section. We regarded the sample mean
of the actual travel times of vehicles in the test data as the ground truth in this
experiment. Statistically, the number of samples should be large enough to be a
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Table 2: Estimated mean parameters for each weather state distribution. The
weather states are ordered by temperature.

Weather state l 1 2 3 4 5 6 7 8

Temperature [◦C] −3.6 −2.9 −2.4 −1.8 −1.4 1.1 8.3 8.8
Snowfall [cm/h] 2 1 0 3 0 0 0 0
Snow depth [cm] 65 56 66 47 56 17 0 0
Precipitation [mm/h] 1.1 0.5 0.0 2.4 0.6 0.0 1.4 0.0

Table 3: Estimated mean parameter for each traffic state distribution. The traffic
states are ordered by mean speed.

Traffic state k 1 2 3 4 5 6 7 8

Mean speed [km/h] 1.2 3.0 5.0 7.2 10.0 13.4 17.6 23.3

Traffic state k 9 10 11 12 13 14 15 16

Mean speed [km/h] 31.0 39.4 48.1 56.9 65.6 75.4 96.7 295.5

(a) l = 1. (b) l = 2. (c) l = 3. (d) l = 4.

(e) l = 5. (f) l = 6. (g) l = 7. (h) l = 8.

Fig. 3: Estimated model for the morning rush hour (7–10 h) on weekdays. The
color of a segment indicates the expected value of the average link speed. Green
represents high speed (100 km/h), red is moderate speed (50 km/h), and blue
is “almost stopped” (0 km/h). Each subfigure corresponds to one of the eight
weather states. Base map tiles ©OpenStreetMap contributors, Who’s On First,
and openstreetmapdata.com. Data are licensed under ODbL.
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Fig. 4: Histogram of prediction errors for expected travel time calculated with
the WATS model. Positive error means that the predicted travel time was longer
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Fig. 5: Comparison of the prediction performance of the expected travel time be-
tween the linear regression (baseline) method and the proposed (WATS) model.

reliable estimator of the ground truth. We therefore employed only the test cases
that included 30 or more actual travel time observations per hour. We obtained
141 test cases from 68 segments.

Figure 4 shows the distribution of prediction error with the WATS model.
Here it can be seen that the error distribution has a sharp peak around zero.
The absolute prediction error was less than 2.5 seconds for more than 40% of
the test cases and less than 20 seconds for 90%.

Figure 5 shows the comparison of the prediction error between the WATS
model and the linear regression method. For this evaluation, the linear regression
model was trained for each segment using the training data, with the hourly
weather observation value w being the input value and with the mean travel
time per hour being the target value. In the left figure, each point corresponds
to a test case, and the error of the proposed method against the baseline method
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is shown. The plots are substantially along the identity line shown as a red
line, and there are both improved and worse cases. The right figure shows the
distribution of absolute prediction error of the two methods. The distribution
seems to be exponential, and the median for the WATS model was less than that
of the linear regression model. However, it is clear that the difference between
two distributions is not very significant and the performances of the two methods
are comparable.

Cross Entropy From the viewpoint of probabilistic modeling, cross entropy
between the distribution estimated by the model and that of the training data
set is also an interesting evaluation metric. It is equal to the average negative log-
likelihood over the test data. Smaller entropy values indicate better explanations
of the data set by the probabilistic model and therefore such a model is con-
sidered to be better at summarizing the data. The linear regression is regarded
as a Gaussian model; i.e., the target variable follows a Gaussian distribution
with mean represented by a linear formula and the variance is a constant. The
variance estimator is the variance of the residual in the training data set.

In this evaluation, the linear regression model was trained for each segment,
with the hourly weather observation value w being the input value and with the
actual travel time being the target value, so that the cross entropy of the actual
travel time data can be evaluated. The test data included 56,186,309 observation
values from 31,891 segments. The cross entropy for the linear model was 4.57
while that for the WATS model was 3.35 (73% of the value for the linear model),
calculated using natural logarithms. This shows that our method fitted the data
better than did the linear regression method.

3.4 Discussion

Our model has confirmed that traffic patterns depend on weather conditions
as well as time and location. It shows traffic smoothness through the travel
time or travel speed distributions under different weather conditions, which are
characterized by values such as temperature and snow depth, and the model
shows the chronic or weather-sensitive bottlenecks. Road administrators and
experts might use this knowledge to improve roads before disaster occurs, or for
planning snow removals after a heavy snowfall. Thanks to the mixing coefficient
for each road segment and for each weather state in our model, clustering analysis
could also be applied over the segments. If it works, it will help us to understand
the characteristics for each road segment and time period by grouping similar
segments such as “susceptible to snow.”

The prediction performance of the expected value using our WATS model was
comparable to that with linear regression. This result suggests that statistics
such as expected value can be learned by a simple model and that there is
potentially a linear relationship between weather and traffic. However, the WATS
model reduced the entropy of data and therefore fitted the data better than
the linear regression model, which cannot explain the individual data points.
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It is presumably caused by the multimodality of the travel time distribution.
Typically, there are several modes in ordinary roads. Vehicles that pass through
the road link without stopping are said to be in “smooth” mode. Vehicles may
also stop at an intersection or a traffic signal, so the mean speed slows down in
this case; such vehicles are in “stop” mode. Because of this multimodality, the
expected value can take a value with a low probability density. In other words,
the actual observed values tend to differ from the expected value, and therefore,
it seems not to be reasonable to suppose that an observed value is unusual or
anomalous just because it differs from the expected value.

Cross entropy is the average information of a data point. Less entropy indi-
cates less information per data point, so that the data become more predictable.
In other words, a low-entropy model can regard most of the data as usual. From
the entropy evaluation, the proposed model regards larger amounts of data as
more “usual” than does the linear regression. Further work is under way to
conduct anomaly detection using the WATS model, whereby traffic incidents or
sudden bottlenecks could be found in real time.

Our analysis is empirical but represents a first step in understanding the
social–physical space. In this paper, we have used travel time as the feature
value for the traffic on a road segment and assumed that it follows a gamma
distribution. However, feature selection and probabilistic modeling are still open
to discuss. Other features such as traffic flow and density, which might be ob-
tained from data sources other than probe vehicles, would be worth consid-
ering. Knowledge information such as traffic signal timing will also be helpful
to improve graphical model structure and probability distribution functions for
mixture components. The model estimation algorithm also requires further de-
velopment. Model selection, such as determining K and L, is an important open
problem. Bayesian inference may also improve model estimation.

4 Conclusion

We have studied a probabilistic model to describe traffic observation data using
both traffic and weather conditions. We proposed the WATS model, which is
a latent variable model to relate traffic data to weather data by borrowing the
idea of the Pachinko allocation model. We have conducted an empirical winter
traffic analysis in the city of Sapporo, Japan, by applying the WATS model to
real weather and traffic data. The model showed the relationship of the expected
vehicular speed to weather conditions, and showed the potential bottleneck seg-
ments according to the weather conditions. The quantitative evaluation showed
that the WATS model fits the data better than the linear regression model,
which suggests the potential for anomaly detection from vehicular observation
data.
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