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Traffic congestion occurs frequently in urban settings, and is not always caused by traffic
incidents. In this paper, we propose a simple method for detecting traffic incidents from
probe-car data by identifying unusual events that distinguish incidents from spontaneous
congestion. First, we introduce a traffic state model based on a probabilistic topic model to
describe the traffic states for a variety of roads. Formulas for estimating the model
parameters are derived, so that the model of usual traffic can be learned using an
expectation–maximization algorithm. Next, we propose several divergence functions to
evaluate differences between the current and usual traffic states and streaming algorithms
that detect high-divergence segments in real time. We conducted an experiment with
data collected for the entire Shuto Expressway system in Tokyo during 2010 and 2011. The
results showed that our method discriminates successfully between anomalous car
trajectories and the more usual, slowly moving traffic patterns.
& 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Automatic incident detection (AID) is a crucial technology
in intelligent transport systems, particularly in terms of
reducing congestion on freeways [1]. Traffic incidents often
cause traffic congestion, causing great inconvenience and
economic loss to society. A technology that can detect traffic
incidents in real time and alert people accordingly would
therefore be a desirable way of reducing these ill effects.

Against this background, there have been many studies
on AID, e.g., [2,3]. Most of the approaches exploit data sent
from stationary sensors and cameras installed on roads.
However, the installation and maintenance of such sensors
is expensive, with only the main routes likely to have them
[4]. On the other hand, the use of probe-car data (PCD), on
which we focus in this paper, is becoming increasingly
er Ltd. This is an open acce

ta),
chi).
important, as the number of probe cars and the size of the
associated data archives increase. PCD includes time-
stamps and vehicle locations, and may contain additional
data such as the speed and direction of the probe cars.
Although a PCD system cannot monitor all cars, it enables
traffic administrators to watch a large area at a lower cost
than by using stationary sensors. In addition, a PCD system
can follow the sequence of movements for a probe car in
detail, which is hard to achieve via stationary sensors, and
trajectory mining can be applied to the collected data.

Using PCD for freeways, it is easy to detect any reduction
in speed, which sometimes implies congestion, by analyzing
the speeds of the probe cars. However, this method is less
applicable to local streets, where the many crossings and
traffic lights can cause cars to stop frequently under normal
circumstances. Moreover, speed reduction is not always
abnormal, even on freeways, and is not always caused by
incidents such as accidents, which we would regard as
sudden and unusual traffic events in this paper.

There are two types of congestion: spontaneous and
abnormal [2]. Detecting spontaneous congestion is less
ss article under the CC BY license
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important, as it originates in road design and urban
planning. Any road may have potential bottlenecks such
as upslopes, curves, junctions, tollgates, and narrow sec-
tions. Vehicles are likely to slow down at the bottlenecks,
with vehicular gaps shortening and drivers in the follow-
ing cars having to brake. Congestion will then occur even
in the absence of a specific traffic incident [5]. Sponta-
neous congestion also occurs when the traffic demand
exceeds the traffic capacity at such bottlenecks, and it is
not resolved until the demand drops below the capacity
[6]. Drivers may be familiar with the locations of such
potential bottlenecks, and they can avoid them. On the
other hand, abnormal congestion originates in traffic
incidents, which need to be detected in real time to
prevent or resolve any sudden heavy congestion.

In this paper, we propose an AID method for detecting
traffic incidents in real time by identifying abnormal car
movements and distinguishing such movements from those
occurring in spontaneous congestion. Our method measures
differences between current traffic states (CTS) and usual
traffic states (UTS), and has two aspects, namely, traffic state
estimation and anomaly detection. First, we employ a prob-
abilistic topic model [7] to model the generation of the PCD,
which is influenced by hidden traffic situations such as
“smooth” and “congested.” The model introduces a single
set of several hidden component states that are associated
with probabilistic distributions over the PCD values, and each
road segment during a certain time period has its own set of
mixing coefficients. Using archived PCD, maximum-likelihood
parameters of the model are estimated by an expectation–
maximization (EM) algorithm. The estimated model reflects
the usual state over the whole observation period. Our
incident detection method simply follows the intuitive mean-
ing of “anomaly.” To detect incidents, the proposed method
estimates the hidden state behind an observed PCD value and
compares this current state with the usual state. If the current
state is significantly different from the usual state, it is
recognized as an anomaly.

We conducted an experiment using PCD observed for the
entire Shuto Expressway system in Tokyo during 2010 and
2011. The total length of the Shuto Expressway system is
approximately 300 km, and the daily traffic is about 1,000,000
vehicles per day [8]. Although the Shuto Expressway system
forms the main artery system for the Tokyo area, there are
many bottlenecks, and the speed limit is 60 km/h or less over
most of the system [9]. Our experiment showed that the
proposed method can identify trajectories involved in an
incident better than existing methods.

The main contributions of this paper are as follows.
�
 We propose a new method for estimating traffic states
by applying a probabilistic topic model to PCD,
whereby road segments are characterized in terms of
their expected performance hourly.
�
 We propose several methods for quantitative evaluation
of the divergence of the CTS from the UTS using the traffic
state model. We also propose several streaming algo-
rithms that detect traffic incidents according to this
divergence, whereby the detection is conducted adap-
tively in terms of the road segments and time periods.
�
 Our experiment showed that the traffic state model
could be estimated using the observed PCD to reveal
bottleneck sections on routes. It also showed that our
AID method performed better than existing methods at
identifying anomalous behavior by vehicles encounter-
ing incidents.
This paper is an extended version of the work published in
the Proceedings of the Workshops of the EDBT/ICDT 2014
Joint Conference [10]. Here, we extend our previous work
by introducing new divergence functions, developing a
new algorithm, and conducting a new experiment using a
larger-scale dataset.

The remainder of the paper is organized as follows. In
the next section, we present related work. In Section 3, we
introduce the traffic state model and describe our incident
detection method. We conducted an experiment to eval-
uate our proposed method using a real PCD, and Section 4
describes the procedure and results of this experiment. We
discuss the experimental results, issues and future work in
Section 5. Finally, we conclude the paper in Section 6.
2. Related work

Anomaly detection [11] has attracted increasing research
interest not only for communication networks [12,13] and
social networks [14], but also for urban data. Using car-
parking data, for example, useful trends as well as unusual
behavior can be automatically extracted by an anomaly-
detection technique [15]. AID can be considered as an
application of anomaly or outlier detection to vehicular traffic
data. Several AID methods have been proposed that exploit
temporal data for vehicular speed [16] or flow data [17],
which can be extracted from roadside surveillance cameras
[18]. From the viewpoint of machine learning, AID can be
regarded as a classification problem. Abdulhai and Ritchie [19]
used neural networks, and Yuan and Cheu [20] used support
vector machines to classify the observed vectors from sta-
tionary sensors as being incident based or otherwise. AID can
also be regarded as an application of the change-point
detection problem in time-series analysis, with Wang et al.
[3] developing a hybrid method using time-series analysis
and machine learning.

PCD, onwhich we are focusing, are different from the data
onwhich existing work has been based. PCD are time-ordered
sequences of points in spatio-temporal spaces, or trajectories.
Piciarelli et al. [21] proposed an anomaly-detection method
for trajectory data. This work used feature values extracted
from the entire trajectory, implying that detection is not
attempted during the ongoing movement of an object. A
number of other studies have been carried out on anomaly
detection from trajectory data that have been extracted from
surveillance-video material [22,23]. This kind of trajectory
data is different from PCD in that the sphere of movement is
limited. Animal-movement data are an example of trajectory
data in which the objects can move around a wide area. Lee
et al. [24] proposed a method to find trajectory outliers using
the example of animal-movement data. Although this method
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exploited spatial features of the trajectory, it did not offer a
method that used temporal or spatio-temporal features.

Turning now to PCD, Zhu et al. [25] applied outlier
detection methods to feature vectors carefully extracted from
PCD using heuristics. If an incident occurs, cars upstream of
the incident will travel slower, and downstream cars will
travel faster. In addition, a car passing an incident position
before the incident will travel faster than one passing just
after the incident. If vðd; t; lÞ is the vehicular speed in link l at
time t on date d, Zhu et al. proposed the following four
features: vðd; t; lÞ, vðd; t; lÞ�vðd; t�1; lÞ, vðd; t; l�1Þ, and
vðd; t; lþ1Þ�vðd; t; lÞ, where link l�1 is the next link
upstream of l, and lþ1 is the next link downstream. These
feature vectors are filtered using the heuristics above and
analyzed via distance-based outlier detection. In another AID
study, Akatsuka et al. [2] proposed an alternative feature
vector.

Previous work exploits the characteristics of congested
traffic, such as slowdown, in which vehicular speed decreases
even in the absence of a traffic incident. In this paper, we take
another approach by following the intuitive meaning of
“anomaly”, namely, an unusual event. Intuitively, we can
identify some “traffic states” as being “smooth” or “con-
gested,” although we cannot measure or observe the state
directly or objectively. Despite many studies having consid-
ered the traffic-state estimation problem, there is no general
agreement about a formal definition for a “traffic state.” Some
research estimates the traffic state in terms of vehicular speed
[26,27], and this kind of estimation characterizes states, i.e.,
quantized speeds, as “free” or “congested” [28]. Yoon et al. [4]
proposed two feature values based on vehicular speed for
detecting “bad” traffic states, i.e., slow traffic. As an alternative,
Kerner et al. [29] used travel time. Xia et al. [30] used a
clustering method to identify congested traffic in a feature
space involving traffic flow, speed, and occupancy. This
approach has been well studied in traffic engineering [6].

The traffic state can be regarded as a set of values of
latent variables that reflect the actual traffic in some way.
Following a traffic incident, the traffic state is different
from the usual traffic state, even though the set of possible
traffic states is not obvious. Probabilistic models that
involve latent variables, or latent-variable models, can
describe the data so that the state can be determined
automatically from a given dataset. Liao et al. [31] pro-
posed a method for detecting anomalies by modeling taxi
probe data using conditional random fields (CRF). This
model requires a labeled dataset for model estimation.
Therefore, the ground-truth data for incidents are neces-
sary in addition to trajectory data. Conversely, in this
paper, we take an unsupervised learning approach. Devel-
oping a detection technique that does not require ground-
truth data should reduce the costs of preparing data and
minimize human errors. Qi and Ishak [32] used a hidden
Markov model (HMM) to describe the generation of
temporal data about vehicular speed observed by loop
detectors. Kwon and Murphy [33] modeled traffic with
coupled HMMs, which assumed that the latent states have
the Markov property for both temporal and spatial aspects.
Herring et al. [34] applied coupled HMMs to taxi probe
data on arterial roads to estimate traffic conditions. We
also tried HMM to detect traffic incidents on the Shuto
Expressway in our preliminary experiment, however, we
found that the traffic state estimation there was poor. In
this paper, we use a model that ignores spatial and
temporal correlations. This simplification allows the num-
ber of model parameters to be reduced, thereby reducing
both time complexity and memory usage and enabling the
method to work together with real-time applications.

Probabilistic topic models, which were originally stu-
died in the field of natural language processing [7], are also
models that including latent variables. Latent Dirichlet
allocation (LDA) [35] is the simplest such topic model,
and several attempts have been made to model traffic data
or urban data using LDA or an LDA extension. Yuan et al.
[36] used a topic model to discover functional regions in a
city using taxi probe data and point-of-interest informa-
tion. Similarly, Farrahi and Gatica-Perez [37] used a topic
model to discover human routines using mobile-phone
location data. LDA can be extended to model object
movement in surveillance-video images [38] and the flow
of people entering or exiting a building [39]. These
approaches take the temporal dependency of latent vari-
ables into account. Anomaly detection using topic models
has also been investigated in previous work. Yu et al. [40]
proposed a topic model for detecting an anomalous group
of individuals in a social network. Several attempts have
also been made to find anomalies using topic models and
surveillance cameras [41,42]. Jeong et al. [43] proposed a
topic model for detecting anomalous trajectories of people
or vehicles in surveillance-video images.

In this paper, we exploit the idea of probabilistic topic
models and aim to identify traffic incidents using PCD and an
LDA-equivalent model. The proposed method first estimates a
set of traffic states over an entire route, and the mixing
coefficients for each road segment, with a “traffic state”
corresponding to a “topic”, to obtain a model for the usual
traffic over the dataset. Whereas the traffic states are identical
for any location and time period, the mixing coefficient
represents local characteristics, enabling our model to operate
despite ignorance of any spatial or temporal correlations. We
then try to identify any unusual events as incidents. This
approach will enable incident detection in an unsupervised
way, i.e., without labeled data. In addition, because this app-
roach avoids heuristics, it will adapt automatically to changes
in traffic circumstances and be applicable to large road
networks with changing characteristics over time. We also
aim for incident detection in real time. We previously pro-
posed a system architecture for real-time traffic incident
detection [9]. The present paper proposes an incident detector
that operates in the backend of such a system.
3. Methodology

This section describes our traffic state model and incident
detection method. We first introduce a method for applying a
probabilistic topic model to PCD. Our task is to estimate the
model parameters using a PCD archive and to identify inc-
idents by comparing the UTS and CTS, which are obtained
from the learned model. Table 1 summarizes the notations
used in this paper.



Table 1
Notation.

Notation Definition

K Number of traffic states
k Index of a traffic state
S Number of segments
s Index of a segment
θk Parameter of the k-th distribution
πs Mixing coefficient vector for segment s
Λ ðfπsgs ¼ 1;…;S; fθkgk ¼ 1;…;K Þ
xsn n-th data for the s-th segment
Ns Number of observations in the s-th segment
Xs Set of data observed in the s-th segment, i.e.,

Xs ¼ fxs1; xs2 ;…; xsNs g
X Whole set of data, i.e., X ¼ fX1;…;XSg
dðs; xÞ Divergence of the current traffic state from the usual

state when the value x is observed for the s-th segment
D Degree of anomaly for a trajectory or segment
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3.1. Traffic state model

Intuitively, we can identify some traffic states as being
“smooth” or “congested”, regardless of the location. Vehi-
cles travel fast in smooth states and behave in a stop-and-
go fashion in heavily congested states. When observing the
speed of a probe car, the value is likely to be small if the
car is in “congested” traffic or large if the traffic is
“smooth.” The value will also be affected by geographical
conditions such as curves and slopes. In short, the beha-
vior of a car is affected by the surrounding traffic state, and
the observed values for the probe car will change, whereas
the traffic state is latent and varies according to the time
and place. This relation between traffic states and PCD can
be modeled using a probabilistic topic model [7].

Traffic-state information is strongly related to geogra-
phical and time-of-day conditions. We therefore introduce
the segment as the unit for traffic observation. A segment is
specified as a certain section of a route during a certain
period. In this paper, we estimate at a fine level of
granularity, for which we define a segment as a certain
50-m length of roadway for a certain direction on a certain
expressway route for a one-hour period regardless of the
day. This is described in more detail in the Experiment
section. PCD includes timestamps and location data, which
are obtained via GPS and are represented by longitude and
latitude, enabling each probe-car observation to be
assigned to a particular segment.

PCD also includes information about values such as
speed and direction that can be recorded directly in the
PCD or calculated from sequential observations. Here, all
the observations are aggregated for each segment, and a
set Xs of the observed data for the s-th segment is
obtained. The symbol xsn, the n-th value of Xs, might have
either a scalar or a vector value. For simplicity, in this
paper, we assume that xsn is a scalar value, but our method
could be extended to observed vector values.

Our model associates a traffic state with a probability
distribution. Let K be the number of states, with the k-th
traffic state corresponding to the parameter θk. The prob-
ability distribution for the s-th segment, given by pðxjsÞ, is
described in terms of a mixture of these K distributions
and can be described as follows:

pðxjsÞ ¼
XK
k ¼ 1

πskpðxjθkÞ; ð1Þ

where πsk is the mixing coefficient for the k-th state and
satisfies the conditions:

0rπskr1;
XK
k ¼ 1

πsk ¼ 1 ð2Þ

for each s. The state parameters fθ1;…;θKg are identical for
all segments, but the mixing coefficient vector
πs ¼ ðπs1⋯πsK ÞT is different for each segment. By using a
global θk, we can compare and characterize segments in
terms of local πs. For example, straight sections are
dominated by “smooth” states, with sections that include
tollgates being dominated by “congested” states.

Finally, for each segment, the generative process for
this model is as follows.
1.
 Choose a hidden state k�multinomial probability dis-
tribution MultiðπsÞ.
2.
 Generate the value xsn � pðxsnjθkÞ.

3.2. Parameter estimation

Our model is described by a mixture distribution, with
its maximum-likelihood parameters estimated by an EM
algorithm. It uses X, the set of observed PCD, as training
data [44]. For simplicity, we introduce the symbol Λ as the
set of all parameters in the model. For the entire set X of
observed data, the likelihood under the model introduced
above is given by the following equation:

LðXÞ ¼ ∏
S

s ¼ 1
∏
Ns

n ¼ 1

XK
k ¼ 1

πskpðxsnjθkÞ: ð3Þ

The update equations are derived by considering the
maximization of the following Q function under constraint
(2):

Q ðX;Λ; Λ̂Þ ¼
XS
s ¼ 1

XNs

n ¼ 1

XK
k ¼ 1

pðkjxsn; Λ̂Þlog pðk; xsnjΛÞ; ð4Þ

where

p
�
k
���xsn; Λ̂�¼ π̂ skpðxsnjθ̂kÞPK

k ¼ 1 π̂ skpðxsnjθ̂kÞ
� γsnk; ð5Þ

pðk; xsnjΛÞ ¼ πskpðxsnjθkÞ; ð6Þ
and Λ̂ refers to the parameters estimated in the previous
EM iteration. This Q is maximized by introducing Lagrange
multipliers and setting its partial derivative to zero. The
update equation for πs is then derived as follows:

πsk ¼
PNs

n ¼ 1 γsnk
Ns

: ð7Þ

This πs does not depend on p, which means that the
update equation will not be changed when the probability
distribution used in the model is modified. On the other
hand, the update equation for θk is derived by solving the
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equation:

XS
s ¼ 1

XNs

n ¼ 1

γsnk
pðxsnjθkÞ

∂
∂θk

p xsn θk

�� �¼ 0:
� ð8Þ

For the remainder of this paper, we assume that xsn is
the vehicular speed in km/h and is a nonnegative integer.
We also assume a Poisson distribution for p:

p
�
xsn θk

�� �� p
�
xsn λk
�� �¼ λxsnk e�λk

xsn!
; ð9Þ

where λk is both the mean and variance, and is the only
parameter of p. In this case, by solving Eq. (8), the update
equation for λk is derived as

λk ¼
PS

s ¼ 1
PNs

n ¼ 1 γsnkxsnPS
s ¼ 1

PNs
n ¼ 1 γsnk

: ð10Þ

We now have an EM algorithm for estimating the
parameters of our traffic state model. In this algorithm,
after generating Λ at random, the EM iteration alternates
between the E step, which calculates all γsnk using Eq. (5),
and the M step, which updates Λ according to Eqs. (7) and
(8), until the log likelihood log LðXÞ converges. The com-
putational complexity of the algorithm is O(NK) per itera-
tion, where N denotes the total number of observed values,
i.e., N¼PsNs.

3.3. Incident detection

Our basic approach to the traffic incident detection
problem is to compare the CTS, which are estimated using
real-time data, with the UTS, which are learned using archival
data, and to detect divergence between them as a traffic
incident, i.e., a sudden and unusual traffic event. Fig. 1 shows
an example of incident detection. Assume that a probe car
travels along a route and observes its speed and any other
feature values for each segment that it passes through. Our
AID method measures the degree of anomaly for each
segment and detects incidents by finding high-divergence
trajectories or segments. In this section, we propose functions
for evaluating the divergence between the CTS and the UTS,
and algorithms for detecting traffic incidents based on
quantitative divergence values.

3.3.1. Divergence functions
We introduce several divergence functions to evaluate

quantitatively the difference between the CTS and the UTS.
A divergence function dðs; xÞ returns the degree of anomaly
when x is observed in the s-th segment. The value for
dðs; xÞ should be large if the observed value is anomalous
and small if the observation is a usual one. We require the
Fig. 1. Example of our incident detection method, which compares the
CTS with the UTS.
function to have additivity, so that the divergence of
consecutive observations can be quantified as the summa-
tion of the divergences for each observation.

A naïve definition of the function exploits the prob-
ability of observing x in the s-th segment. In general, the
probability is high if the observation is as usual, while the
probability is low if the observation is anomalous. There-
fore, we can define dðs; xÞ as the negative log probability of
the observation, which satisfies the additivity require-
ment:

dðs; xÞ ¼ � log pðxjsÞ ¼ log
XK
k ¼ 1

πskpðxjθkÞ
 !

: ð11Þ

We can also define dðs; xÞ by considering the traffic
states. Because the parameters of the model are estimated
to fit the distribution in the dataset, the learned model
itself reflects the usual traffic over the whole observation
period. In a segment s, we will have a distribution of traffic
states pðkjsÞ after the parameter estimation. When an
observed value x is given for the segment, we can compute
the posterior distribution of traffic states pðkjs; xÞ using
Bayes' theorem:

pðkjs; xÞppðkjsÞpðxjs; kÞ: ð12Þ
One possible definition of dðs; xÞ compares pðkjs; xÞ with
pðkjsÞ using a measure of the difference between two
distributions, such as the Kullback–Leibler (KL) diver-
gence:

dðs; xÞ ¼ KLðps JpsxÞ; ð13Þ
where KLðpJqÞ is the KL divergence of a distribution q from
a distribution p, and where psðkÞ ¼ pðkjsÞ and psxðkÞ ¼
pðkjs; xÞ.

Now, consider the intuitive idea illustrated in Fig. 1. There
must be differences in travel behavior between vehicles, and
the use of the probability distributions described above may
be susceptible to them. Our approach considers the usual and
current traffic states, which are discretized and robust toward
such differences, and compares them to identify unusual
events. We can therefore define the usual traffic state for the
s-th segment, denoted by σðsÞ, as the probable state:

σðsÞ ¼ arg max
k

pðkjsÞ ¼ arg max
k

πsk: ð14Þ

Meanwhile, the current traffic state, when x is observed in the
s-th segment, is denoted by σðs; xÞ and can be defined as the
probable state given x and s. It can be estimated as

σðs; xÞ ¼ arg max
k

fπskpðxjθkÞg: ð15Þ

For example, the usual state σðsÞ may indicate smooth traffic
in a straight midnight segment, congested traffic in a rush-
hour segment, or stop-and-go traffic in segments that contain
tollgates for any time of day. If σðsÞ indicates congested traffic
and σðs; xÞ is also congested, the current traffic remains usual
and would not be considered an anomaly. If the usual state
σðsÞ indicates free-flowing traffic and the current state σðs; xÞ
indicates stop-and-go traffic, then it would be suspected that
an incident had occurred. Because, in our model, each state is
associated with a probability distribution pðxjθkÞ, we measure
the difference of σðs; xÞ from σðsÞ in terms of the KL
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Fig. 2. Example of trajectory-based (TB) and segment-based (SB)
approaches. The shades of gray indicate the value of d, the degree of
anomaly, which is calculated for each vehicle for each segment. The red
rectangle is a sliding window used in the TB approach, and the blue
rectangle is used in the SB approach. The length of the “TB” sliding
window is constant, and the sum of the d values in the sliding window is
evaluated to detect incidents. The length of the “SB” sliding window can
vary in this view because the sliding window is defined using a time
parameter, and the average of the d values in the sliding window is
evaluated.
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divergence of the two distributions:

dðs; xÞ ¼ KLðpσðsÞ Jpσðs;xÞÞ; ð16Þ

where pk denotes the probability distribution of observed
data x in the k-th state, i.e., pðxjθkÞ. In this paper, as
mentioned above, we assume a Poisson distribution for p.
The KL divergence between two Poisson distributions pk and
pl, whose parameters are denoted by λk and λl respectively,
can be derived as

KL pk Jpl
� �¼ λl�λkþλk log

λk
λl
: ð17Þ

As previously stated, the parameter λ is the mean of the
distribution.

There are several alternative measures of the difference
between two probability distributions. Because the KL
divergence is asymmetric, we could use the inverse KL
divergence instead of the KL divergence:

dðs; xÞ ¼ KLðpσðs;xÞ JpσðsÞÞ: ð18Þ

Another alternative is the Jensen–Shannon (JS) divergence,
which is a symmetric measure:

dðs; xÞ ¼ JSðpσðsÞ; pσðs;xÞÞ; ð19Þ

where JSðpk; plÞ is the JS divergence:

JS pk; pl
� �¼ 1

2 KL pk Jq
� �þ1

2 KL pl Jq
� �

where q¼ 1
2 pkþpl
� �

:

ð20Þ

The JS divergence between two Poison distributions can-
not be given by a closed-form expression, but the series
converges rapidly, and an approximation can be calculated
numerically by summing up the first 100–200 terms when
both λk and λl are smaller than 100.

The Hellinger distance is another symmetric measure:

dðs; xÞ ¼HellingerðpσðsÞ; pσðs;xÞÞ; ð21Þ

where Hellingerðpk;plÞ is the Hellinger distance. For two
Poisson distributions, it can be derived as

Hellinger pk; ql
� �¼ 1�exp �1

2

ffiffiffiffiffi
λk

q
�

ffiffiffiffi
λl

q� 	2
 !

: ð22Þ

So far, we have defined dðs; xÞ as the distance between the
probability distributions of σðsÞ and σðs; xÞ. We defined the
usual traffic state of the s-th segment σðsÞ as its most probable
state, under the assumption that a segment should be domi-
nated by a single state. For example, assume that πs1 ¼ 0:49
and πs2 ¼ 0:48 for the s-th segment. The usual traffic state
σðsÞ would be assumed to be the first state, because it is the
most probable, even though the second one is almost equally
probable. If the two states are very different and the estimated
current state σðs; xÞ is the second one, the dðs; xÞ defined
above will be large. However, the traffic state model is a
mixture model, and we can consider a superposition of traffic
states to avoid this problem. Given an observed value x, the
probability of the usual state is pðkjsÞ and the probability for
the current state to be l is pðljs; xÞ. Therefore, the probability of
observing the divergence between the states k and l is
pðkjsÞpðljs; xÞ, and we can define the divergence dðs; xÞ as
the weighted sum of the divergences for each state pair:

dðs; xÞ ¼
XK
k ¼ 1

XK
l ¼ 1

pðkjsÞpðljs; xÞKLðpk JplÞ; ð23Þ

where the divergence between two states is measured in
terms of KL divergence. Using pðkjsÞ ¼ πsk, this equation can
be transformed as follows:

dðs; xÞ ¼πT
sΔπðs; xÞ; ð24Þ

where

Δ¼
KLðp1 Jp1Þ ⋯ KLðp1 JpK Þ

⋮ ⋱ ⋮
KLðpK Jp1Þ ⋯ KLðpK JpK Þ

0
B@

1
CA; ð25Þ

πðs; xÞ ¼ ðpð1js; xÞ pð2js; xÞ ⋯ pðKjs; xÞÞT: ð26Þ
Because πs and Δ are independent of x, we can obtain the
transposed K-vector πT

sΔ, denoted by δT
s , just after the end of

the period of traffic-state-model learning. When x is observed,
the divergence defined in Eq. (23) is calculated as the dot
product of δs and πðs; xÞ. Of course, we could use inverse KL
divergence, JS divergence, or Hellinger distance instead of KL
divergence when δs is calculated.

3.3.2. Detection algorithms
We defined dðs; xÞ to quantify the degree of anomaly for

each observation. In essence, our detection algorithm uses
dðs; xÞ to calculate a degree of anomaly, denoted by D, and
gives an alert when D exceeds a given threshold. We
introduce alternative definitions for D based on two different
approaches, namely, a trajectory-based (TB) approach and a
segment-based (SB) approach. Fig. 2 shows an example of the
two approaches.

TB approach: In this approach, the detection algorithm
attempts to find the trajectory of a probe car whose
behavior is abnormal. A probe car travels along a route,
and we measure the divergence dðs; xÞ for each segment



1 http://nlftp.mlit.go.jp/ksj/
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traversed. Assume that d is a sequence of measured dðs; xÞ
values, Nd is the number of observations in d, and di is the
i-th value in d. The oldest observation is d1, and the latest
is dNd . Because we have defined dðs; xÞ to have the property
of additivity so that the divergence of consecutive obser-
vations can be quantified as the summation of the diver-
gences for each observation, the divergence of the whole
trajectory can be defined as follows:

D¼
XNd

i ¼ 1

di: ð27Þ

The more a car deviates from its usual behavior, the larger
Dwill be. However, if D is defined as above, it will continue
to increase as long as the car runs, and any trajectory
would be determined eventually as being anomalous. Tak-
ing an average over the whole trajectory can avoid this
problem, but it is still a problem that the value for D
cannot be obtained until the probe car finishes traveling. It
is also a problem that the sphere of influence of an
incident cannot be specified. Therefore, we redefine D as
the sum of N consecutive divergences:

D¼
Xi0 þN�1

i ¼ i0

di: ð28Þ

This version of D can be calculated in real time by
maintaining di using N-length sliding windows and using
its summation [9].

SB approach: In this approach, the detection algorithm
monitors the divergences over time for each segment and
gives an alert when the divergence is sufficiently high.
Assume that several probe cars have passed through a
segment s for the past T seconds. The degree of anomaly
dðs; xÞ can be calculated for each observation, respectively.
Let SWðs; TÞ be the set of d values. Then SW can be
considered to be a sliding window over the time T, which
is drawn as a blue rectangle in Fig. 2. Note that jSWðs; TÞj,
the cardinality of the set SW, is equivalent to the number
of probe cars traversing the segment s for the past T
seconds, and can therefore vary according to the time.
We now define D as the sum of d in SW:

D¼
X

dASWðs;TÞ
d: ð29Þ

However, this D will also increase as the traffic becomes
dense, i.e., as the number of probe cars traversing the
segment within T seconds increases. We therefore revise
the definition of D to take an average over the probe cars
in the sliding window:

D¼ 1
jSWðs; TÞj

X
dASWðs;TÞ

d: ð30Þ

Whereas the TB approach tries to find abnormal behavior
by a probe car, the SB approach is designed to simulate
roadside-sensor-based traffic monitoring via probe-car
data. A sliding window in the SB approach continuously
watches a certain segment so that the detector can output
the time and place of an incident.
4. Experiment

4.1. Dataset and preprocessing

Our PCD was obtained from probe cars traveling on the
Shuto Expressway system during 2010 and 2011. The PCD
include several tens of millions of observations. We first
conducted data preprocessing, which comprised five
phases: segment definition, map matching, trajectory
identification, interpolation, and labeling. These proce-
dures are described below.

Segment definition: As defined in Section 3.1, a certain
segment corresponds to a certain 50-m length of roadway for
a certain direction on a certain expressway route for a one-
hour period regardless of the day. We defined the road
segments by partitioning each route on the expressway every
50 m. The direction was noted. We also divided each day into
24 h and associated each segment with one-hour periods.
This experiment did not consider days of the week.

Map matching: Although the above definition of a seg-
ment is based on an expressway route, the location data in
the PCD were described in terms of the two-dimensional
coordinates of longitude and latitude, with the original
observation not related to any particular segment. Map
matching is a technology for identifying the road segment
on which the vehicle is traveling and for locating the vehicle
within that segment [45]. Several map matching methods
have been proposed [46,47]. In this experiment, map match-
ing was conducted in the simplest way: a probe car's
observation was matched with the nearest segment to the
car's location. The direction was estimated from the angular
difference between the probe car's heading azimuth in the
PCD and the segment's azimuth for each direction, and
choosing the direction that gave the smaller angle. We used
the National Land Numerical Information (NLNI)1 as the
roadmap data. This set of data contains linestrings, which
represent the shape of expressways and toll roads. The shape
of junctions is not represented strictly, and road-width
information is not included. After the map matching, we
removed noisy records, namely, those more than 100m from
the nearest road. An observation was also removed if the
angular difference between its heading azimuth and the
segment's azimuth was more than 451.

Trajectory identification: To identify the continuous move-
ment of the car, i.e., its trajectory, we grouped all observations
in the dataset of records by anonymized car ID and sorted
them by timestamp for each group, before concatenating
them in chronological order whenever the time gap between
two consecutive observations was 60 s or less.

Interpolation: We used a probe car's speed as the obs-
erved value in this experiment. However, as mentioned in
Section 3.3, our detection method estimated the current state
for each trajectory for each segment that the car had
traversed. Our 50-m segment was too short for fast-moving
probe cars to provide observations for every segment,
whereas a slow-moving car could generate multiple observa-
tions in a single segment. Accordingly, we used the mean
speed as the observation value for each segment for each

http://nlftp.mlit.go.jp/ksj/


Table 2
Statistics for the dataset.

Route Direction Length
(km)

# in part (a)/(b)/(c)

Segments Observations Trajectories Incidents Observations in
incidents

Trajectories in
incidents

(1) Ueno Inbound 4.30 85/85/85 792078/454175/
511037

20985/11728/
13568

0/11/22 0/310/633 0/39/74

(1) Haneda Inbound 12.58 250/250/
250

6479136/3991898/
3889471

74022/42323/
43674

0/311/
435

0/32234/44159 0/1273/1766

(1) Haneda Outbound 12.58 250/250/
250

6246959/3788658/
3665425

70453/40219/
41482

0/116/
203

0/9246/17460 0/440/779

(2) Meguro Inbound 5.70 112/112/
112

1812270/1038831/
954443

23782/13332/
12260

0/71/98 0/2829/3468 0/166/185

(2) Meguro Outbound 5.70 112/112/
112

1463662/872699/
736948

17354/10280/
8678

0/15/14 0/503/321 0/21/18

(3) Shibuya Inbound 11.70 232/232/
232

9490711/5569544/
5369891

65065/38621/
38479

0/425/
609

0/51908/74377 0/1640/2381

(3) Shibuya Outbound 11.70 233/233/
233

8630888/5255259/
5162198

62734/38563/
39184

0/332/
403

0/38110/51231 0/1103/1570

(4) Shinjuku Inbound 13.27 264/264/
264

10681788/6252381/
6093679

70500/40900/
40431

0/394/
514

0/68705/73368 0/2061/2215

(4) Shinjuku Outbound 13.27 264/264/
264

10142665/6132584/
5967115

68588/40519/
39194

0/436/
449

0/82656/71391 0/2093/1963

(5) Ikebukuro Inbound 21.10 420/420/
420

17186588/9907871/
9445068

110929/64056/
62187

0/510/
702

0/69114/115972 0/2354/3646

(5) Ikebukuro Outbound 21.10 420/420/
420

16416424/9335481/
9086078

103907/59799/
58265

0/568/
816

0/58386/114376 0/2120/3579

(6) Misato Inbound 10.23 203/203/
203

6479441/3786663/
3619748

44353/25326/
24532

0/232/
311

0/35096/62137 0/863/1369

(6) Misato Outbound 10.23 203/203/
203

7015915/4090983/
4006477

44909/26295/
25354

0/137/
144

0/15521/16618 0/464/607

(6) Mukojima Inbound 9.41 187/187/
187

4944680/3102482/
2611225

78108/46307/
41934

0/226/
274

0/17679/22290 0/927/1213

(6) Mukojima Outbound 9.41 187/187/
187

6304960/3691151/
3489748

78388/45684/
43391

0/377/
441

0/32256/45488 0/1452/1811

(7) Komatsugawa Inbound 11.19 222/222/
222

4102884/2507305/
2208502

39227/23071/
20044

0/124/
176

0/10309/12643 0/438/547

(7) Komatsugawa Outbound 11.19 222/222/
222

4084778/2609988/
2259405

29087/18868/
16264

0/35/35 0/2142/3433 0/81/111

(9) Fukagawa Inbound 5.35 105/105/
105

2427724/1327255/
1362920

30616/16343/
16780

0/93/178 0/4482/9070 0/243/436

(9) Fukagawa Outbound 5.35 105/105/
105

1991012/1043268/
1111541

24652/13135/
13532

0/28/10 0/456/395 0/46/21

(11) Daiba Inbound 3.68 71/71/71 1505294/818800/
837530

25453/13523/
14222

0/94/158 0/3543/8010 0/220/428

(11) Daiba Outbound 3.68 72/72/72 2338885/1274658/
1394220

34977/19043/
20981

0/28/36 0/1384/1406 0/76/88

(C1) Inner circular Counterclockwise 14.00 278/278/
278

10987711/6478632/
6125324

228108/132148/
127611

0/993/
1181

0/59382/83258 0/3453/4710

(C1) Inner circular Clockwise 14.00 278/278/
278

11220562/6521415/
6162208

212109/123424/
117349

0/1038/
1309

0/71823/86398 0/3380/3961

(C2) Central
circular (west)

Counterclockwise 10.79 214/214/
214

4380668/3173120/
3295236

39442/25426/
25621

0/276/
444

0/15142/27339 0/649/1139

(C2) Central
circular (west)

Clockwise 10.79 214/214/
214

3340908/2735642/
2973822

31195/22465/
23639

0/235/
350

0/13478/21081 0/597/946

(C2) Central
circular (east)

Counterclockwise 25.22 501/500/
500

16248358/9138931/
9122772

104236/59352/
58779

0/480/
592

0/75190/125806 0/2093/3245

(C2) Central
circular (east)

Clockwise 25.22 501/501/
501

17636512/10035085/
9935318

107118/61243/
60511

0/577/
745

0/51813/86449 0/1480/2224

(Y) Yaesu Northbound 1.55 30/30/30 193661/107788/
104587

7321/4057/
3940

0/29/54 0/313/536 0/38/70

(B) Bayshore
(west)

Eastbound 37.91 755/755/
755

19365358/11199556/
11705000

84020/48877/
51501

0/121/
191

0/14131/25462 0/499/792

(B) Bayshore
(west)

Westbound 37.91 757/757/
757

17326082/10325601/
10673341

73703/41633/
43200

0/121/
156

0/8304/18252 0/263/533

(B) Bayshore
(east)

Eastbound 24.01 479/479/
479

21959324/11994826/
13071082

119437/64043/
70639

0/262/
499

0/32253/74072 0/1066/2075

(B) Bayshore
(east)

Westbound 24.01 479/479/
479

23047168/12873257/
13746786

121868/65826/
72143

0/228/
492

0/63681/142289 0/1505/3422

(S1) Omiya Inbound 8.25 163/163/
163

2893492/1616952/
1679369

25837/14486/
14005

0/4/17 0/101/312 0/7/25
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Table 2 (continued )

Route Direction Length
(km)

# in part (a)/(b)/(c)

Segments Observations Trajectories Incidents Observations in
incidents

Trajectories in
incidents

(S1) Omiya Outbound 8.25 163/163/
163

2570384/1563298/
1571199

22626/13578/
13384

0/3/17 0/41/555 0/3/29

(S5) Kawaguchi Inbound 12.09 240/240/
240

8215563/4703713/
4738225

48346/26801/
27563

0/172/
237

0/27794/54694 0/657/1151

(S5) Kawaguchi Outbound 12.09 240/240/
240

8478819/4858376/
5055100

45730/25762/
26497

0/140/
211

0/11734/20666 0/390/657

(K1) Yokohane Inbound 19.27 383/384/
383

10245910/6241855/
6252839

64879/38222/
39391

0/128/
161

0/10197/16243 0/343/543

(K1) Yokohane Outbound 19.27 383/383/
383

10467448/6390554/
6304514

66510/39667/
39318

0/143/
242

0/7149/18916 0/332/712

(K2) Mitsusawa Inbound 2.53 49/49/49 1253797/749791/
749555

33744/20380/
20174

0/18/33 0/624/3168 0/47/162

(K2) Mitsusawa Outbound 2.53 49/49/49 935405/552126/
569965

25404/14951/
15499

0/11/37 0/466/1459 0/33/93

(K3) Kariba Inbound 8.91 177/177/
177

3733713/2208095/
2195942

35741/21461/
21890

0/44/55 0/2352/5760 0/119/178

(K3) Kariba Outbound 8.91 177/176/
177

3218503/1943342/
1934921

36676/21567/
21791

0/52/118 0/2641/8995 0/130/374

(K5) Daikoku Inbound 3.64 67/67/67 365049/215077/
245619

5870/3425/
3896

0/12/9 0/311/109 0/19/10

(K5) Daikoku Outbound 3.64 69/69/69 398590/239082/
243637

6068/3625/
3700

0/2/6 0/22/39 0/2/6

In some cases, additional segments were recognized because the shape information of the roadmap data we used is incomplete at junctions. The
nonexistent segments were rarely recognized by the map-matching process.
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trajectory. This was obtained from the time required for the
car to pass through the 50-m segment after we calculated the
time when the car entered and left any segment by linear
interpolation. Again, we removed noisy trajectories that
traversed less than 10 segments, i.e., a 500-m distance.

Labeling: For the evaluation, we labeled each observa-
tion in the trajectories, using the traffic log made available
by the administrator of the Shuto Expressway. This traffic
log was recorded via stationary sensors on or alongside the
roads every five minutes, together with manual annota-
tions about incidents such as accidents and construction.
An observation was labeled as anomalous whenever the
stationary sensor nearest to the segment recorded an
incident at that time.

According to NLNI, the Shuto Expressway system comprises
29 routes, including short branches, and every route has traffic
in both directions. Because the regulation and traffic patterns
are different for each route, we partitioned our dataset to
account for each direction on each route. We removed route
data involving less than two actual incident occurrences.
Because we did not have ground truth data for 2010, we
conducted a cross-validation as follows. We first divided the
data into three parts: (a) the data during 2010, (b) the data
during the first half of 2011, and (c) the data during the second
half of 2011. We then estimated the model using (a) beside
either (b) or (c), with the detection test conducted using the
remaining part. For the remainder of this paper, “Fold 1”
denotes the trial with the training dataset (a) and (b), and
“Fold 2” denotes the trial with the training dataset (a) and (c).
Table 2 summarizes the statistical information for our PCD
after the preprocessing. In the remainder of this section, we
estimated a traffic state model using a whole training dataset
so that the traffic state “topic” was learned globally among
routes, whereas traffic incident detection was conducted
independently for each route.
4.2. Parameter estimation

After the preprocessing, we estimated the parameters
of our traffic state model for each training dataset. In this
experiment, the observed values represented the speed of
probe cars as nonnegative integers, and we assumed a
Poisson distribution for the probability distribution corre-
sponding to each traffic state. We implemented the EM
algorithm described in Section 3.2 using OpenMP for
multiprocessing. The estimation was executed on our 32-
core Xeon computer.

We first examined the optimal value of K, the number
of traffic states, using Akaike's information criterion (AIC).
The optimal parameter value is that corresponding to the
minimum AIC value, which means that the estimated
model will achieve high likelihoods via a simple model, i.
e., a model having few parameters. Fig. 3 shows the plots
of the AIC for different values of K. The effect of model
complexity was substantially less than that of the like-
lihood for improving the AIC, with the AIC value being
almost the same for large K. We therefore assumed a value
for K of 8 when conducting the experiment. Fig. 4 shows
the log-likelihood of the model against the number of
iterations of the EM algorithm, up to 20 iterations. In this
experiment, we considered the algorithm to have con-
verged when the improvement in log-likelihood fell below
0.01%, which was achieved after seven iterations. The
execution of the EM algorithm up to the seventh iteration
required about 18 min for both folds.



Fig. 3. Plot of AIC for different values of K, the number of traffic states: (a) Fold 1 and (b) Fold 2.

Fig. 4. Log-likelihood of the model against the number of the EM iterations, where K is 8: (a) Fold 1 and (b) Fold 2.

Fig. 5. Histogram of the speed of probe cars in a segment and the
estimated Poisson mixture.
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Fig. 5 shows the actual histogram for a segment of the
inbound Shibuya route as a stepwise line chart and the
estimated Poisson mixture as a solid curved line. Each of
the eight Poisson distributions was multiplied by the mixing
coefficients πsk, which are also shown in Fig. 5 as dashed
curves. We note that the estimated curve almost fits the
actual histogram for the training dataset.

Fig. 6 shows the usual traffic state σðsÞ for each segment in
the Shuto Expressway system, which was estimated using the
learned traffic state model. The color of the segment indicates
the parameter value for the Poisson distribution of σðsÞ, i.e., the
mean speed in the usual traffic state. Green represents high
speed (100 km/h), red is moderate speed (50 km/h), and blue is
“almost stopped” (0 km/h). The four figures (a)–(d) show the
usual traffic over four different one-hour periods. We can see
that the traffic is usually slow at several places during the rush
hour, indicating that congestion usually occurs, whereas the
traffic is almost smooth during the day and atmidnight. Fig. 6(e)
shows an enlarged view near the Iidabashi interchange on the



Fig. 6. Estimated usual traffic state σðsÞ for all 50-m segments, drawn on the OpenStreetMap. The color of a segment indicates the parameter value for the
Poisson distribution of the maximum probable state, i.e., the mean speed of σðsÞ. Green represents high speed (100 km/h), red is moderate speed (50 km/h),
and blue is “almost stopped” (0 km/h) (map tiles © OpenStreetMap contributors, CC BY-SA 2.0). (a) 00:00–01:00, (b) 07:00–08:00, (c) 13:00–14:00, (d)
18:00–19:00 and (e) 18:00–19:00 near the Iidabashi interchange on the Ikebukuro Route.
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Table 3
Tested parameter values.

Detection algorithm Parameter values

TB N¼1, 2, 3, 4, 5, 10, 15, 20, 25, 30
SB T¼60, 300, 600, 1800, 3600

Fig. 7. Box plots of the AUC values for the proposed TB and SB methods.
Each box plot describes the distribution of AUC values for all combina-
tions of the parameters, divergence function, and route: (a) Fold 1 and (b)
Fold 2.
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Ikebukuro Route between 18:00 and 19:00. The outbound
direction is from the lower right to the upper left.2 The figure
shows that outbound traffic is usually slow near sharp curves
and at the Iidabashi entrance in the center of the map, whereas
the usual state of the other segments, including the inbound
route, is “moderate” or “smooth.” Here, it can be seen that the
estimated traffic state model has enabled any road section
during a certain period to be characterized using a single set of
traffic states, with the usual pattern of traffic thereby being
described at a fine level of time and space granularity.

4.3. Incident detection

Using the estimated traffic model, we evaluated the
performance of the proposed method. Our detection method
gives an alert when the divergence of an input set of
observation values for the estimated traffic model exceeds a
given threshold. We regarded a set that includes at least one
value labeled as an anomaly to be a truly anomalous set. The
two proposed algorithms require parameters N or T. Table 3
summarizes the parameter values used in this experiment.

The results shown in Section 4.2 indicated that the
traffic pattern was different for each route, section, and
time, and therefore the detection threshold must be
changed accordingly. Although the granularity of such a
threshold tuning should depend on the amount of data, we
know of no method to determine the appropriate granu-
larity. In this experiment, we conducted incident detection
for each route, because the traffic characteristics were
considered to be comparatively homogeneous on an indi-
vidual route. We evaluate the selectivity performance of
incident detectors in terms of a receiver-operating char-
acteristic (ROC) curve. An ROC curve is drawn by plotting
the true positive rate (TPR) against the false positive rate
(FPR) at any threshold. Both TPR and FPR change according
to the detection threshold: both values are zero when the
threshold is high enough not to give an alert for any input,
whereas they are equal to one when the threshold is low
enough. With an ideal detector, TPR can be one with FPR
being zero at a certain threshold. Therefore, the “area
under the curve” (AUC) reflects the discrimination perfor-
mance, with larger AUC values indicating better discrimi-
nation. For each route, we first applied the detection
algorithms to our twofold dataset and obtained the values
of divergence for each input. We therefore have possible
values for the threshold at which either TPR or FPR
changes. The ROC curve was drawn by plotting TPR against
FPR in all cases.

We conducted a comprehensive experiment. The detec-
tion performance was examined by calculating AUC values
2 Note that vehicles drive on the left side of the road in Japan.
respectively for all combinations of the algorithm (TB or
SB), parameters (shown in Table 3), divergence function
(proposed in Section 3.3.1), and route. At the beginning of
the analysis of results, we first investigated the perfor-
mance of the two algorithms proposed in Section 3.3.2.
Fig. 7 shows box plots for the distribution of the AUC
values, comparing the TB and SB approaches. Values less
than Q1�1:5IQR are plotted as outliers, where Q1 is the
first quartile and IQR is the interquartile range, the
difference between the first and third quartiles. As seen
in Fig. 7, there is no significant difference between the TB
and SB algorithms' performance. Therefore, we decided to
examine the performance further only in terms of the TB
algorithm.

Next, we investigated the performance of the diver-
gence functions proposed in Section 3.3.1. Fig. 8 shows the
results in terms of box plots similar to those above. The
results indicate that the weighted KL divergence, defined
as Eq. (23), achieved the best performance among the
functions because its AUC values were the most concen-
trated at high values and its the median was the highest.
Therefore, we used this function for the remainder of the
experiment.

We also examined the optimal value for the parameter N,
the length of the sliding window, using weighted KL diver-
gence as the divergence function. Fig. 9 shows the distribution
of AUC values for each N. From this figure, the discrimination
performance was almost unchanged as N increased. Fig. 10
shows the ROC curves for four cases when N was 10. Because
we were using 50-m segments, the length of the sliding
window was equivalent to a 500-m distance along a route.

As shown in Fig. 9, the AUC value was more than 0.8 in
most cases. The best performance was achieved on the
northbound Yaesu route, and the second best case was the
outbound Kawaguchi route. The TPR reached 80%, with the
FPR being less than about 3% in both cases, as shown in Fig. 10
(a) and (b). On the other hand, there were a couple of outlier



Fig. 8. Box plots of AUC values for the TB algorithm for each divergence function: (a) Fold 1 and (b) Fold 2.

Fig. 9. Box plots of AUC values for the TB algorithmwith the weighted KL divergence function for each N, namely, the number of consecutive segments in a
sliding window: (a) Fold 1 and (b) Fold 2.
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cases where the discrimination performance was extremely
low. The worst case was the outbound Daikoku route, as
shown in Fig. 10(c). The dataset for this route contains a very
small number of actual incidents. Therefore, the detection
performance through the dataset is greatly influenced by the
characteristics of individual incidents. We investigated the
dataset in detail, and we found trajectories that look as if the
traveling behavior is different from the usual because of noise,
whereas there was actually no incident at that time. The
proposed method detected them as anomalies, and such
misdetections influenced the detection performance evalu-
ated by the ROC curves. The second worst case was the
outbound Meguro route. After the TPR reached 40%, with the
FPR being less than 1%, the ROC curve continued almost
straight ahead to the upper right corner. From the dataset for
this route, the proposed method could detect incidents with
high precision when the threshold was high enough. When
the threshold was decreased, the method detected other
segments near incident-labeled segments as well as the
abnormal segments.

4.4. Comparison with a previous method

So far, we have reported on the performance of the pro-
posed method and obtained the best parameters and func-
tions. We also conducted an experiment to compare our
method with a baseline method, namely, the method of Zhu
et al. [25], which was described in Section 2. The latter



Fig. 10. Detection performances of the proposed method in terms of ROC curves. (a) The best case: the northbound Yaesu route, (b) the second best case:
the outbound Kawaguchi route, (c) the worst case: the outbound Daikoku route and (d) the second worst case: the outbound Meguro route.

3 Our proposed detector was implemented without involving
parallel-processing technologies.
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method finds traffic incidents by applying a distance-based
outlier detection algorithm to feature vectors, which are
carefully extracted using heuristics and normalized according
to the mean and variance. The algorithm calculates the
distance between any two feature vectors and detects outliers
whenever the average distance of a vector to any other point
is more than a given threshold. This algorithm runs in a batch
manner, and its complexity is OðN2Þ, where N is the number
of observed feature vectors.

In this paper, we have tackled the problem of detecting
traffic incidents in real time. We modified the baseline
method to enable its application to our dataset in a streaming
manner as follows. First, a queue was prepared to store the
last n feature vectors. Variables for storing the sum and sum
of squares of feature vectors for each dimension were also
prepared, to enable the mean and variances to be calculated.
Whenever a vehicular speed is observed, a feature vector is
generated using both those data and data observed in the
past, with the sum and sum of squares being updated. Any
vectors in the queue in addition to the input vector are then
normalized according to the mean and variance for each
dimension before the distances between the input feature
vector and any vectors in the queue are calculated. The
algorithm outputs the average distance as the degree of
anomaly for the input vector and detects whether it exceeds
a given threshold. Then, if the queue is full, the oldest vector
is removed, and the sum and the sum of squares are updated.
Finally, the input vector is queued. We can infer that the
detection performance is improved as the queue length n
increases because the detector can then exploit more knowl-
edge in determining anomalies. However, the algorithm will
take longer time to execute because the computational
complexity is O(n) for each input, which might prevent the
algorithm from working in real time.

We compared the baseline and proposed methods for
three routes that were carefully selected. The chosen routes
were the clockwise Inner circular route (Route C1), represent-
ing a slow-traffic ring road, the outbound Ikebukuro route
(Route 5), representing a moderate-traffic radial road, and the
eastbound Bayshore (east) route (Route B), representing a
fast-traffic road. We implemented the baseline method using
OpenMP to enable parallel execution with up to 32 threads.3



Fig. 11. AUC values for the filterless baseline method with various queue lengths. The horizontal dashed line shows the AUC values for the proposed
method: (a) Route C1, Fold 1, (b) Route 5, Fold 1, (c) Route B, Fold 1, (d) Route C1, Fold 2, (e) Route 5, Fold 2, and (f) Route B, Fold 2.
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Varying the queue length from 1 to 500,000, we executed the
base line method with a single thread to reduce the overhead
of context switching whenever the queue length was less
than 10,000. Elsewhere, we used 32 threads to reduce the
actual time of execution. We evaluated the two methods in
terms of their AUC values and CPU times.

Although it was suggested [25] that input instances
should be filtered in accordance with the heuristic condi-
tions, we first evaluated the performance of the baseline
method without any filtering to compare its discrimination
performance for each input with that of the proposed
method. The performance was evaluated using AUC values.
Figs. 11 and 12 show the performance of the filterless
baseline method with various queue lengths, in terms of
the AUC values and the CPU time required to process the
input dataset, with the horizontal dashed line showing the
performance of the proposed method. Our method com-
pleted the detection task for a half year within 100 s for
each route. As indicated in the figures, the performance of
the baseline method was improved as the queue length
increased because it could utilize a wider range of knowl-
edge, but at a considerable cost in time to complete the
detection. The detection performance of the proposed
method was comparable to that of the baseline method
when the queue length is 500,000, but the CPU time for our
method was less than 0.1% of that for the baseline. Although
the detection performance of the baseline method could be
improved with a larger queue length to exploit more data,
the algorithm would take much longer than would our
method, thereby causing difficulty for real-time applica-
tions. Our method has access to data observed in the past in
a compact form and can detect incidents in a short time.
Next, we evaluated the performance of the baseline
method using the proposed filtering [25], to compare the
detection performance for each incident with that of the pro-
posed method. The filter discards any input vectors consid-
ered not to be from an incident, based on heuristics.
Although the ROC curve should connect points (0,0) and
(1,1), the baseline method with filtering broke off before the
(1,1) point was reached, because the method filtered out
some feature vectors of incidents, with the number of tested
trajectories being less than the total number of trajectories.
From the perspective of incident detection, dropping input
vectors that are actually from an incident is permissible
provided that at least one input vector is detected for the
incident. We therefore evaluated the performance using the
detection rate (DR), the ratio of the number of detected
incidents to that of actual incidents. Because several trajec-
tories may be involved in one incident, we judged that an
incident was correctly detected if at least one trajectory or
feature vector was detected by each method.

As with the ROC curve, the FAR–DR curve is drawn by
plotting the DR against the FPR at various threshold. We
used the AUC value of the FAR–DR curve instead of the
ROC curve, which we call the DR-AUC value in this paper.
Because the FAR–DR curve of the baseline method also
broke off before (1,1) was reached, the DR-AUC value was
calculated by linear interpolation between the right-hand
end of the FAR–DR curve and (1,1). Fig. 13 shows the DR-
AUC values for the filtered baseline method with various
queue lengths, and Fig. 14 shows the CPU times required to
process the entire input dataset. From these figures, the
detection performance of the proposed method was com-
parable to that of the baseline method.



Fig. 12. CPU times for the filterless baseline method with various queue lengths. The horizontal dashed line shows the CPU time for the proposed method:
(a) Route C1, Fold 1, (b) Route 5, Fold 1, (c) Route B, Fold 1, (d) Route C1, Fold 2, (e) Route 5, Fold 2, and (f) Route B, Fold 2.
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5. Discussion

Previous work has exploited several heuristics to detect
traffic incidents and congestion, whereas our work takes a
completely statistical approach that avoids heuristics and
enables real-time applications. In this study, we introduced
a traffic state model based on a probabilistic topic model,
proposed an incident detection method using the model, and
tested its discrimination performance and incident detection
performance.

We found that the proposed method could detect
incidents at the same level as the existing method in a
shorter time. Because our method is generic and exten-
sible, it would be expected to outperform existing meth-
ods by including several heuristics that consider the
context of individual situations. For example, it would be
effective to optimize the detection threshold according to
the section and time. Whereas the experiment in this
paper took only the route into account, the granularity of
threshold tuning remains to be determined in future
studies. Although we used only the vehicular speed as
the observed value in this experiment, other features,
which can be extracted carefully from PCD via heuristics,
should also contribute to improving the detection perfor-
mance. In addition, it might be effective to extend the
traffic state model by introducing other latent variables
and relations among them. It is also possible to apply our
method to data obtained by roadside sensors, given that a
road segment in our model can correspond to a stationary
sensor. Again, this might improve the detection
performance. In that case, we could employ the detection
algorithm for the SB approach instead of using the TB ver-
sion. Although we evaluated the detection performance
using ROC curves, determining the value of the threshold
is necessary for practical use. It is known that the detec-
tion threshold can be optimized using ROC curves [48].
The adaptive optimization of detection thresholds was not
considered here, being left to future work.

From the perspective of continuous traffic monitoring, any
incident should be followed up from its occurrence to its
resolution. Although it is sufficient for the initial detection of
an incident that at least one input instance can be detected
reliably, even if other instances of the incident are not
detected, this would be insufficient for these applications. To
realize an automated monitoring system, it must be able to
determine correctly whether a current observation of traffic
or a trajectory is anomalous.

We found that the proposed method could distinguish
trajectories that were involved in an incident better than the
existing method. The Shuto Expressway system has many
bottlenecks, such as curves and narrow sections that require
frequent changes in vehicular speed, unlike straight freeways.
We speculate that this is the reason that our intuitive method
found that “unusual” car behavior worked better than a
heuristic method that pays attention to changes in speed.
As our method detected nonabnormal segments near places
of incidents as well as abnormal segments in the experiment,
future work should elaborate the algorithm so that the
detector can have high resolution of discrimination. Future
work should also verify that this approach is also effective for



Fig. 13. DR-AUC values for the filtered baseline method with various queue lengths. The horizontal dashed line shows the DR-AUC value for the proposed
method: (a) Route C1, Fold 1, (b) Route 5, Fold 1, (c) Route B, Fold 1, (d) Route C1, Fold 2, (e) Route 5, Fold 2, and (f) Route B, Fold 2.

Fig. 14. CPU times for the filtered baseline method with various queue lengths. The horizontal dashed line shows the CPU time for the proposed method:
(a) Route C1, Fold 1, (b) Route 5, Fold 1, (c) Route B, Fold 1, (d) Route C1, Fold 2, (e) Route 5, Fold 2 and (f) Route B, Fold 2.
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local streets where normal behavior involves cars stopping
frequently.

We tested the performance of the proposed method
using several of the divergence functions proposed in
Section 3.3.1 and found that using the negative log prob-
ability of the observation as the divergence function was
the worst performer. This observation indicates that for
incident detection problems, it is not satisfactory simply to
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find low-probability objects. Conversely, the experiment
showed that KL divergence was the best performer for the
divergence function. In our model, a traffic state is asso-
ciated with a Poisson distribution, which generates an
observation value for vehicular speed. As shown in the
Appendix to this paper, given two Poisson distributions p1
and p2 whose parameters are λ1 and λ2 respectively,
KLðp1 Jp2Þ4KLðp2 Jp1Þ holds where λ14λ240. Because
the parameter of the Poisson distribution is equivalent to
its mean, this property can be interpreted in the context of
our traffic state model as follows. Assume a fast traffic
state F whose mean speed is λF and a slow traffic state S
whose mean speed is λS, where λF4λS. According to the
property of KL divergence, the divergence of the current
traffic state S from the usual traffic state F is greater than
that of the current traffic state F from the usual traffic state
S. This property is advantageous for the incident detection
problem because traffic incidents often cause traffic con-
gestion and a slowdown. However, a particular incident
will be hard to detect by the proposed method if the traffic
behavior in the incident is very similar to regular sponta-
neous congestion. It remains a challenge for future
research to detect these kinds of incidents and to extract
a deeper insight about each detected incident, which
might involve an accident, car troubles, or road debris.

So far, we have discussed the discrimination and detection
performance of the proposed method. We now consider
another topic of key interest, namely, real-time processing.
Our detection method itself is scalable because its complexity
is O(K) for each input, and the number of traffic states K is not
very large in practice, as shown in the experiment. We have
designed and developed a real-time traffic incident detection
system, which applies our algorithm to a PCD stream and
shows the high-divergence segments on a map [9]. However,
our detection method is based on the traffic state model,
which was acquired via batch processing. In the long term,
the usual pattern of traffic can vary, and it will be necessary to
update the model by some means. For our experiment, the
learning process for about 18 months of data was completed
in about 18 min using parallel-processing technology, which
suggests that regular updating might be a simple solution to
this problem. Although our experiment showed that the
number of traffic states was not very large in practice, the
number of segments and observations will surely become
greater in the future. This requires that the algorithm should
be scalable in this respect. Further work is in progress to
develop a scalable method for learning the model.

6. Conclusion

In this paper, we have studied the problem of detecting
traffic incidents using PCD. Although congestion can be
detected by monitoring vehicular speeds, it is a chronic
condition in some spots and does not necessarily indicate
the occurrence of an incident. To detect traffic incidents, we
took an approach that identifies any unusual events. We first
introduced a probabilistic topic model to describe the state of
monitored traffic so that usual traffic behavior can be learned.
We then proposed several divergence functions for evaluating
the difference between the current and usual traffic based on
the model and streaming algorithms to detect high-diver-
gence segments in real time. Our method was applied to real
PCD collected for the entire Shuto Expressway system in
Tokyo, and the discrimination and detection performance was
evaluated. The results showed that our method could dis-
criminate trajectories affected by incidents from other trajec-
tories, using KL divergence as the divergence function, which
enables monitoring of an incident from beginning to end.
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Appendix A. KL divergence between two Poisson
distributions

The Poisson distribution is defined as follows:

pðx λ
�� �¼ λxe�λ

x!
; ðA:1Þ

where x is a non-negative integer and λ40. The mean and
variance of the Poisson distribution pðxjλÞ are both equiva-
lent to λ. Let p1ðxÞ � pðxjλ1Þ and p2ðxÞ � pðxjλ2Þ both be
Poisson distributions. The KL divergence between them
KLðp1 Jp2Þ is derived as follows:

KL p1 Jp2
� �¼ λ2�λ1þλ1 log

λ1
λ2
: ðA:2Þ

According to this definition, the KL divergence is clearly
asymmetric, i.e., KLðp1 Jp2ÞaKLðp2 Jp1Þ where λ1aλ2.

Assume λ14λ240. We obtain the two KL divergences
as follows:

KLðp1 Jp2Þ ¼ λ2�λ1þλ1 log λ1�λ1 logλ2; ðA:3Þ

KLðp2 Jp1Þ ¼ λ1�λ2þλ2 log λ2�λ2 logλ1: ðA:4Þ
Let Δðλ1;λ2Þ be the difference between them:

Δðλ1;λ2Þ ¼ KLðp1 Jp2Þ�KLðp2 Jp1Þ ðA:5Þ

Δðλ1;λ2Þ ¼ 2λ2�2λ1þλ1 log λ1
�λ1logλ2�λ2logλ2þλ2 logλ1: ðA:6Þ

We will now show that Δðλ1; λ2Þ40. First, the partial
derivative of Δ with respect to λ1 is as follows:

∂Δ
∂λ1

¼ �2þ log λ1þ1� logλ2þ
λ2
λ1

¼ λ2
λ1

� log
λ2
λ1

�1: ðA:7Þ

By substituting μ for λ2=λ1, we obtain the following
function:

δðμÞ ¼ μ� log μ�1: ðA:8Þ
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The derivative of Eq. (A.8) is as follows:

δ0 μ
� �¼ 1�1

μ
¼ μ�1

μ
: ðA:9Þ

μtakes a value between 0 and 1 because λ14λ240.
Within this range of μ, δ0ðμÞo0 holds. Accordingly, δðμÞ
decreases monotonically. Therefore, δðμÞ4δð1Þ ¼ 0 holds,
where 0oμo1, and the right side of Eq. (A.7) becomes
positive, giving

∂Δ
∂λ1

40: ðA:10Þ

Provided that λ2 is constant and λ1 is greater than λ2, Δ
will decrease as λ1 decreases:

Δðλ1; λ2Þ4Δðλ2; λ2Þ ¼ 0: ðA:11Þ
Therefore, Δðλ1; λ2Þ40 and we finally obtain the following
inequality:

KLðp1 Jp2Þ4KLðp2 Jp1Þ; ðA:12Þ
where λ14λ240.
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